TECHNICAL DATA SHEET

PE15A5019 is a wideband GaN amplifier operating in the 7.2 GHz to 7.5 GHz Frequency Range, the module is ideal for linear applications including COFDM video and UAV/UGV data links. The module can also provide over 20 Watts typical of analog FM power. This amplifier has several proprietary protection circuits including Load VSWR protection, low or high bias protection, 1 reverse bias protection and thermal protection. One of the smallest in the industry, its rugged construction guarantees fault-free operation in the most extreme environments. The connectorized SMA module is unconditionally stable.

Features
- 7.2 GHz to 7.5 GHz Frequency Range
- Psat 15 Watt Typical
- Linear COFDM Power Output 5 Watt Typical
- Small Signal Gain: 58 dB typical
- Gain Flatness: ±2.0 typical
- 50 Ohms Input and Output Matched
- Unconditionally Stable
- Regulated Supply & Bias Sequencing
- Overvoltage Protection

Applications
- COFDM video
- UAV/UGV data links
- High Gain Linear Driver Power Amplifier
- High Gain Linear Output Power Amplifier

Electrical Specifications (TA = +25°C, DC Voltage = 33Volts)

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>7.2</td>
<td>7.5</td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>Small Signal Gain</td>
<td></td>
<td>58</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>±2</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input Power (CW)</td>
<td></td>
<td>+10</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Pout at Sat.</td>
<td>+41.76</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Linear COFDM Power Output</td>
<td>+37</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Impedance (Input)</td>
<td>50</td>
<td></td>
<td></td>
<td>Ohms</td>
</tr>
<tr>
<td>Impedance (Output)</td>
<td>50</td>
<td></td>
<td></td>
<td>Ohms</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>-15</td>
<td>-14</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>TTL Control</td>
<td>“1”: On, “0”: Off, Enable: 5V, Disable: 0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise/Fall Time</td>
<td><0.2</td>
<td></td>
<td></td>
<td>usec</td>
</tr>
<tr>
<td>Operating DC Voltage</td>
<td>9</td>
<td>33</td>
<td></td>
<td>Volts</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>750</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Operating Current at</td>
<td>2.3</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-10</td>
<td>+85</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

Click the following link (or enter part number in “SEARCH” on website) to obtain additional part information including price, inventory and certifications: 58 dB Gain, 15 Watt Psat, 7.2 GHz to 7.5 GHz, High Power GaN Amplifier, SMA Input, SMA Output PE15A5019
Pasternack does not make any representation or warranty regarding the suitability of the part described herein for any particular purpose, and Pasternack does not assume any liability arising out of the use of any part or documentation.

Protections

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max RF Input</td>
<td>+10 dBM</td>
</tr>
<tr>
<td>Load VSWR @ 20 Watts</td>
<td>∞ at all amplitudes / phase angles</td>
</tr>
<tr>
<td>Thermal Shutdown</td>
<td>Unit will shut down if case temperature exceeds +85°C, will automatically turn back on when case temperature falls ~ 10°C from shutdown.</td>
</tr>
<tr>
<td>Over Voltage</td>
<td>Unit will shut down if input voltage exceeds +33 VDC</td>
</tr>
<tr>
<td>Under Voltage</td>
<td>Unit requires a minimum of +9 VDC to enable. Unit will also shut down if VDC falls below +9 V during operation.</td>
</tr>
<tr>
<td>True Reverse</td>
<td>Unit will not enable and the unit will not draw current if +VDC and Ground are reversed</td>
</tr>
</tbody>
</table>

Mechanical Specifications

- **Size**
 - Length: 6 in [152.4 mm]
 - Width: 2.5 in [63.5 mm]
 - Height: 1.06 in [26.92 mm]
- **Weight**: 0.05 lbs [22.68 g]
- **Input Connector**: SMA Female
- **Output Connector**: SMA Female
- **Cooling**: HEATSINK REQUIRED use PE15G5011 OR PE15G5011F

Environmental Specifications

- **Temperature**
 - Operating Range: -10 to +85 deg C
 - Storage Range: -55 to +100 deg C
- **Humidity**: 95%
- **Shock**: MIL-STD-810F Method 516.5
- **Vibration**: MIL-STD-810F Method 516.5
- **Altitude**: MIL-STD-810F Method 500.4

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: 58 dB Gain, 15 Watt Psat, 7.2 GHz to 7.5 GHz, High Power GaN Amplifier, SMA Input, SMA Output PE15A5019
TECHNICAL DATA SHEET

Compliance Certifications (see product page for current document)

Plotted and Other Data

Notes:
- Values at +25 °C, sea level
- ESD Sensitive Material, Transport material in Approved ESD bags. Handle only in approved ESD Workstation.
- Heat Sink Required for Proper Operation, Unit is cooled by conduction to heat sink.

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: 58 dB Gain, 15 Watt Psat, 7.2 GHz to 7.5 GHz, High Power GaN Amplifier, SMA Input, SMA Output PE15A5019
Amplifier Power-up Precautions

1.) Confirm that proper ESD precautions and controls are always in place before handling any Amplifier module.

2.) Confirm adequate thermal management is in place to effectively dissipate heat away from the Amplifier package. The Amplifier operational baseplate temperature must be within the operational temperature range stated in the Amplifier datasheet. Depending on the design and thermal requirements, using a heatsink with cooling fan is always recommended for safe reliable operation. A heat sink without a cooling fan may also be used. Damage caused from overheating will void the warranty.

3.) Confirm adequate system grounding is established. The DC power supply and Amplifier must have a common ground in order to operate properly.

4.) Power Amplifiers may require additional DC Current when initially powered-up. Depending on the design, the input current draw could range from an additional 10% to 100% above the maximum rated DC current of the Amplifier. This varies based on product part number.

5.) Confirm the DC power supply, if limited, is set to allow for additional start-up current that’s rated for the Power Amplifier.

6.) Confirm the system is designed and calibrated for 50 ohms. Any impedance mismatch may cause performance issues.

7.) Perform a CALIBRATION (if required) with the loads before connecting the Amplifier to the Network Analyzer to ensure proper performance.

8.) Use a fixed attenuator between the signal source and input port of the Amplifier to optimize the input VSWR match.

9.) Confirm the input power level at the input port of the amplifier does not exceed the maximum rated limit for input power (as stated in the Amplifier datasheet).

10.) Confirm the Network Analyzer is always connected to the Amplifier first before DC power is applied to the Amplifier.

11.) As long as the input and output ports of the amplifier are connected to a 500ohm load and RF signal power is applied, the Amplifier can be powered up with DC voltage.

12.) Confirm the Amplifier output load is matched for a 50 Ohm impedance and will not exceed the maximum rated VSWR or Return Loss limit for the Amplifier. Exceeding the maximum rated VSWR or Return Loss limit will result in reflected signal power that could damage the Amplifier and void the warranty.

13.) Power Amplifier connected to an Antenna for signal transmission - It’s strongly recommended to use a high power fixed attenuator pad or an Isolator between the output port of the Amplifier and input port to the antenna. Any reflected signal power due to impedance mismatch will likely damage the Amplifier and void the warranty.

14.) The attenuator or isolator used at the output port of the Amplifier must be rated to handle the output power level and operational frequency band of the amplifier.

Click the following link (or enter part number in “SEARCH” on website) to obtain additional part information including price, inventory and certifications: 58 dB Gain, 15 Watt Psat, 7.2 GHz to 7.5 GHz, High Power GaN Amplifier, SMA Input, SMA Output PE15A5019
58 dB Gain, 15 Watt Psat, 7.2 GHz to 7.5 GHz, High Power GaN Amplifier, SMA Input, SMA Output

Click the following link (or enter part number in “SEARCH” on website) to obtain additional part information including price, inventory and certifications: 58 dB Gain, 15 Watt Psat, 7.2 GHz to 7.5 GHz, High Power GaN Amplifier, SMA Input, SMA Output PE15A5019
58 dB Gain, 15 Watt Psat, 7.2 GHz to 7.5 GHz, High Power GaN Amplifier, SMA Input, SMA Output

Click the following link (or enter part number in “SEARCH” on website) to obtain additional part information including price, inventory and certifications: 58 dB Gain, 15 Watt Psat, 7.2 GHz to 7.5 GHz, High Power GaN Amplifier, SMA Input, SMA Output PE15A5019
58 dB Gain, 15 Watt Psat, 7.2 GHz to 7.5 GHz, High Power GaN Amplifier, SMA Input, SMA Output

TECHNICAL DATA SHEET

58 dB Gain, 15 Watt Psat, 7.2 GHz to 7.5 GHz, High Power GaN Amplifier, SMA Input, SMA Output from Pasternack Enterprises has same day shipment for domestic and International orders. Our RF, microwave and millimeter wave products maintain a 99.4% availability and are part of the broadest selection in the industry.

Click the following link (or enter part number in “SEARCH” on website) to obtain additional part information including price, inventory and certifications: 58 dB Gain, 15 Watt Psat, 7.2 GHz to 7.5 GHz, High Power GaN Amplifier, SMA Input, SMA Output PE15A5019

The information contained in this document is accurate to the best of our knowledge and representative of the part described herein. It may be necessary to make modifications to the part and/or the documentation of the part, in order to implement improvements. Pasternack reserves the right to make such changes as required. Unless otherwise stated, all specifications are nominal. Pasternack does not make any representation or warranty regarding the suitability of the part described herein for any particular purpose, and Pasternack does not assume any liability arising out of the use of any part or documentation.
Pasternack does not make any representation or warranty regarding the suitability of the part described herein for any particular purpose, and Pasternack does not assume any liability arising out of the use of any part or documentation.