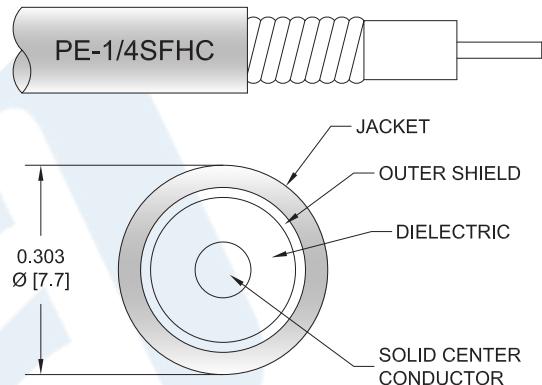


## N Male Right Angle to N Female Low PIM Cable 48 Inch Length Using 1/4 inch Superflexible Coax



### RF Cable Assemblies Technical Data Sheet


**PE3C7847-48**

#### Configuration

- Connector 1: N Male Right Angle
- Connector 2: N Female
- Cable Type: 1/4" Superflexible

#### Features

- Max Frequency 6 GHz
- Low PIM: -150 dBc Max
- Shielding Effectivity > 120 dB
- 82% Phase Velocity
- PE Jacket
- Low PIM and Low Loss
- 100% Tested with PIM Test Results Marked on Cable



#### Applications

- General Purpose
- Laboratory Use
- Low PIM Applications
- Distributed Antenna Systems (DAS)
- Low PIM Applications and PIM Testing

#### Description

Pasternack's PE3C7847-48 type N male right angle to type N female 48 inch cable using 1/4 inch superflexible coax is part of our full line of RF components available for same-day shipping. Pasternack's corrugated RF cable assemblies are ideal for applications where durability and high power are needed. This Pasternack type N to type N cable assembly has a male to female gender configuration with 50 ohm corrugated 1/4" superflexible coax. The PE3C7847-48 type N male to type N female cable assembly operates to 6 GHz. Our low PIM design also offers excellent passive intermodulation performance with PIM levels better than -150 dBc. The right angle type N interface on the 1/4" superflexible cable allows for easier connections in tight spaces.

Custom versions of most RF cable assemblies can be built and shipped same day. Custom cable assembly lengths can be obtained by specifying the desired length on the web site at time of order or by contacting a sales representative. Other available RF cable assembly value added services include connector orientation or clocking, heat shrink booting and custom labeling. RF testing can also be performed to document the electrical performance of your cable assembly.

#### Electrical Specifications

| Description             | Minimum | Typical | Maximum | Units |
|-------------------------|---------|---------|---------|-------|
| Frequency Range         | DC      |         | 6       | GHz   |
| VSWR                    |         |         | 1.5:1   |       |
| Velocity of Propagation |         | 82      |         | %     |
| RF Shielding            | 120     |         |         | dB    |
| Passive Intermodulation |         |         | -150    | dBc   |

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [N Male Right Angle to N Female Low PIM Cable 48 Inch Length Using 1/4 inch Superflexible Coax PE3C7847-48](#)

## N Male Right Angle to N Female Low PIM Cable 48 Inch Length Using 1/4 inch Superflexible Coax



### RF Cable Assemblies Technical Data Sheet

**PE3C7847-48**

|                               |              |                 |
|-------------------------------|--------------|-----------------|
| Capacitance                   | 24.4 [80.05] | pF/ft [pF/m]    |
| Inductance                    | 0.059 [0.19] | uH/ft [uH/m]    |
| DC Resistance Inner Conductor | 3.2 [10.5]   | Ω/1000ft [Ω/Km] |
| DC Resistance Outer Conductor | 2.53 [8.3]   | Ω/1000ft [Ω/Km] |
| Jacket Spark                  | 2,000        | Vrms            |

#### Specifications by Frequency

| Description           | F1   | F2   | F3  | F4   | F5   | Units |
|-----------------------|------|------|-----|------|------|-------|
| Frequency             | 0.1  | 0.25 | 0.5 | 1    | 3    | GHz   |
| Insertion Loss (Typ.) | 0.31 | 0.35 | 0.4 | 0.48 | 0.67 | dB    |

#### Electrical Specification Notes:

The Insertion Loss data above is based on the performance specifications of the coax and connectors used in this assembly. The Insertion Loss includes an estimated 0.15 dB for the right angle connector and 0.1 dB for the straight connector.

#### Mechanical Specifications

##### Cable Assembly

Length\*

48 in [121.92 cm]

##### Cable

Cable Type

1/4" Superflexible

Impedance

50 Ohms

Inner Conductor Type

Solid

Inner Conductor Material and Plating

Copper Clad Aluminum

Dielectric Type

PE (F)

Number of Shields

1

Shield Layer 1

Helically Corrugated Copper Tube

Jacket Material

PE, Black

Jacket Diameter

0.303 in [7.7 mm]

One Time Minimum Bend Radius

0.5 in [12.7 mm]

Repeated Minimum Bend Radius

1 in [25.4 mm]

Typical Flex Cycles

20

Tensile Strength

79 lbs [35.83 Kg]

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [N Male Right Angle to N Female Low PIM Cable 48 Inch Length Using 1/4 inch Superflexible Coax PE3C7847-48](#)

## N Male Right Angle to N Female Low PIM Cable 48 Inch Length Using 1/4 inch Superflexible Coax



### RF Cable Assemblies Technical Data Sheet

**PE3C7847-48**

#### Connectors

| Description                       | Connector 1        | Connector 2      |
|-----------------------------------|--------------------|------------------|
| Type                              | N Male Right Angle | N Female         |
| Specification                     | IEC 61169-16       | IEC 61169-16     |
| Impedance                         | 50 Ohms            | 50 Ohms          |
| Contact Material and Plating      | Brass, Silver      | Bronze, Silver   |
| Dielectric Type                   | PTFE               | PTFE             |
| Body Material and Plating         | Brass, Tri-Metal   | Brass, Tri-Metal |
| Coupling Nut Material and Plating | Brass, Tri-Metal   |                  |

#### Environmental Specifications

##### Temperature

Operating Range

-40 to +85 deg C

#### Compliance Certifications (see [product page](#) for current document)

#### Plotted and Other Data

Notes:

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [N Male Right Angle to N Female Low PIM Cable 48 Inch Length Using 1/4 inch Superflexible Coax PE3C7847-48](#)

N Male Right Angle to N Female Low PIM Cable  
48 Inch Length Using 1/4 inch Superflexible Coax



RF Cable Assemblies Technical Data Sheet

PE3C7847-48

**How to Order**

Part Number Configuration:

**PE3C7847**

- **xx**

**uu**

Unit of Measure:  
cm = Centimeters  
<blank> = Inches  
Length  
Base Number

Example: PE3C7847-12 = 12 inches long cable  
PE3C7847-100cm = 100 cm long cable

N Male Right Angle to N Female Low PIM Cable 48 Inch Length Using 1/4 inch Superflexible Coax from Pasternack Enterprises has same day shipment for domestic and International orders. Our RF, microwave and millimeter wave products maintain a 99.4% availability and are part of the broadest selection in the industry.

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [N Male Right Angle to N Female Low PIM Cable 48 Inch Length Using 1/4 inch Superflexible Coax PE3C7847-48](#)

URL: <https://www.pasternack.com/n-male-n-female-pe-1-4-sfhc-cable-assembly-pe3c7847-48-p.aspx>

The information contained in this document is accurate to the best of our knowledge and representative of the part described herein. It may be necessary to make modifications to the part and/or the documentation of the part, in order to implement improvements. Pasternack reserves the right to make such changes as required. Unless otherwise stated, all specifications are nominal. Pasternack does not make any representation or warranty regarding the suitability of the part described herein for any particular purpose, and Pasternack does not assume any liability arising out of the use of any part or documentation.

**PE3C7847-48 CAD Drawing**  
**N Male Right Angle to N Female Low PIM Cable 48 Inch**  
**Length Using 1/4 inch Superflexible Coax**

| REV. |                 | DESCRIPTION |  | DATE    | APPROVED |
|------|-----------------|-------------|--|---------|----------|
| A    | INITIAL RELEASE | 1/14/2021   |  | S.ELLIS |          |

REVISIONS

(SEE NOTE 1)

(SEE NOTE 2)

PIM LEVEL  
777ZBc  
S/N: XXXXXXXX

NOTES:

1. CABLES 84" AND UNDER HAVE 1 LABEL CENTERED. CABLES OVER 84" HAVE 2 LABELS, ONE AT EACH END 12.0" FROM THE END OF THE CONNECTOR.
2. 6" FROM CABLE END 1 PLACE FOR ALL LENGTHS OF CABLE.

THESE COMMODITIES, TECHNOLOGY OR SOFTWARE WERE EXPORTED FROM THE UNITED STATES IN ACCORDANCE WITH THE EXPORT ADMINISTRATION REGULATIONS. DIVERSION CONTRARY TO U.S. LAW PROHIBITED.

UNLESS OTHERWISE SPECIFIED  
LEADING DIMENSIONS ARE INCHES  
DIMENSIONS IN [ ] ARE MILLIMETERS  
TOLERANCES:

|                  |        |                      |
|------------------|--------|----------------------|
| X = $\pm 2$      | [5.08] | FRACTIONS            |
| .XX = $\pm .02$  | [.51]  | $\pm 1/32$           |
| XXX = $\pm .005$ | [.13]  | ANGLES $\pm 1^\circ$ |

CABLE LENGTH (L) TOLERANCES:

|                                                               |
|---------------------------------------------------------------|
| L $\leq$ 12 [305] = $+1[28] / -0$                             |
| 12 [305] $<$ L $\leq$ 60 [1524] = $+2[51] / -0$               |
| 60 [1524] $<$ L $\leq$ 120 [3048] = $+4[102] / -0$            |
| 120 [3048] $<$ L $\leq$ 300 [7620] = $+6[152] / -0$           |
| 300 [7620] $<$ L $\leq$ 480 [12192] = $+8[152] / -0$          |
| 480 [12192] $<$ L $\leq$ 660 [16848] = $+10[152] / -0$        |
| 660 [16848] $<$ L $\leq$ 840 [21496] = $+12[152] / -0$        |
| 840 [21496] $<$ L $\leq$ 1020 [26152] = $+14[152] / -0$       |
| 1020 [26152] $<$ L $\leq$ 1200 [30816] = $+16[152] / -0$      |
| 1200 [30816] $<$ L $\leq$ 1380 [35472] = $+18[152] / -0$      |
| 1380 [35472] $<$ L $\leq$ 1560 [40128] = $+20[152] / -0$      |
| 1560 [40128] $<$ L $\leq$ 1740 [44784] = $+22[152] / -0$      |
| 1740 [44784] $<$ L $\leq$ 1920 [49440] = $+24[152] / -0$      |
| 1920 [49440] $<$ L $\leq$ 2100 [54192] = $+26[152] / -0$      |
| 2100 [54192] $<$ L $\leq$ 2280 [58848] = $+28[152] / -0$      |
| 2280 [58848] $<$ L $\leq$ 2460 [63504] = $+30[152] / -0$      |
| 2460 [63504] $<$ L $\leq$ 2640 [68160] = $+32[152] / -0$      |
| 2640 [68160] $<$ L $\leq$ 2820 [72816] = $+34[152] / -0$      |
| 2820 [72816] $<$ L $\leq$ 3000 [77472] = $+36[152] / -0$      |
| 3000 [77472] $<$ L $\leq$ 3180 [82128] = $+38[152] / -0$      |
| 3180 [82128] $<$ L $\leq$ 3360 [86784] = $+40[152] / -0$      |
| 3360 [86784] $<$ L $\leq$ 3540 [91440] = $+42[152] / -0$      |
| 3540 [91440] $<$ L $\leq$ 3720 [96192] = $+44[152] / -0$      |
| 3720 [96192] $<$ L $\leq$ 3900 [100848] = $+46[152] / -0$     |
| 3900 [100848] $<$ L $\leq$ 4080 [105504] = $+48[152] / -0$    |
| 4080 [105504] $<$ L $\leq$ 4260 [110160] = $+50[152] / -0$    |
| 4260 [110160] $<$ L $\leq$ 4440 [114816] = $+52[152] / -0$    |
| 4440 [114816] $<$ L $\leq$ 4620 [119472] = $+54[152] / -0$    |
| 4620 [119472] $<$ L $\leq$ 4800 [124128] = $+56[152] / -0$    |
| 4800 [124128] $<$ L $\leq$ 4980 [128784] = $+58[152] / -0$    |
| 4980 [128784] $<$ L $\leq$ 5160 [133440] = $+60[152] / -0$    |
| 5160 [133440] $<$ L $\leq$ 5340 [138192] = $+62[152] / -0$    |
| 5340 [138192] $<$ L $\leq$ 5520 [142944] = $+64[152] / -0$    |
| 5520 [142944] $<$ L $\leq$ 5700 [147600] = $+66[152] / -0$    |
| 5700 [147600] $<$ L $\leq$ 5880 [152256] = $+68[152] / -0$    |
| 5880 [152256] $<$ L $\leq$ 6060 [156912] = $+70[152] / -0$    |
| 6060 [156912] $<$ L $\leq$ 6240 [161568] = $+72[152] / -0$    |
| 6240 [161568] $<$ L $\leq$ 6420 [166224] = $+74[152] / -0$    |
| 6420 [166224] $<$ L $\leq$ 6600 [170880] = $+76[152] / -0$    |
| 6600 [170880] $<$ L $\leq$ 6780 [175536] = $+78[152] / -0$    |
| 6780 [175536] $<$ L $\leq$ 6960 [180192] = $+80[152] / -0$    |
| 6960 [180192] $<$ L $\leq$ 7140 [184848] = $+82[152] / -0$    |
| 7140 [184848] $<$ L $\leq$ 7320 [189504] = $+84[152] / -0$    |
| 7320 [189504] $<$ L $\leq$ 7500 [194160] = $+86[152] / -0$    |
| 7500 [194160] $<$ L $\leq$ 7680 [198816] = $+88[152] / -0$    |
| 7680 [198816] $<$ L $\leq$ 7860 [203472] = $+90[152] / -0$    |
| 7860 [203472] $<$ L $\leq$ 8040 [208128] = $+92[152] / -0$    |
| 8040 [208128] $<$ L $\leq$ 8220 [212784] = $+94[152] / -0$    |
| 8220 [212784] $<$ L $\leq$ 8400 [217440] = $+96[152] / -0$    |
| 8400 [217440] $<$ L $\leq$ 8580 [222096] = $+98[152] / -0$    |
| 8580 [222096] $<$ L $\leq$ 8760 [226752] = $+100[152] / -0$   |
| 8760 [226752] $<$ L $\leq$ 8940 [231408] = $+102[152] / -0$   |
| 8940 [231408] $<$ L $\leq$ 9120 [236064] = $+104[152] / -0$   |
| 9120 [236064] $<$ L $\leq$ 9300 [240720] = $+106[152] / -0$   |
| 9300 [240720] $<$ L $\leq$ 9480 [245376] = $+108[152] / -0$   |
| 9480 [245376] $<$ L $\leq$ 9660 [250032] = $+110[152] / -0$   |
| 9660 [250032] $<$ L $\leq$ 9840 [254688] = $+112[152] / -0$   |
| 9840 [254688] $<$ L $\leq$ 10020 [259344] = $+114[152] / -0$  |
| 10020 [259344] $<$ L $\leq$ 10200 [264000] = $+116[152] / -0$ |
| 10200 [264000] $<$ L $\leq$ 10380 [268656] = $+118[152] / -0$ |
| 10380 [268656] $<$ L $\leq$ 10560 [273312] = $+120[152] / -0$ |
| 10560 [273312] $<$ L $\leq$ 10740 [277968] = $+122[152] / -0$ |
| 10740 [277968] $<$ L $\leq$ 10920 [282624] = $+124[152] / -0$ |
| 10920 [282624] $<$ L $\leq$ 11100 [287280] = $+126[152] / -0$ |
| 11100 [287280] $<$ L $\leq$ 11280 [291936] = $+128[152] / -0$ |
| 11280 [291936] $<$ L $\leq$ 11460 [296592] = $+130[152] / -0$ |
| 11460 [296592] $<$ L $\leq$ 11640 [301248] = $+132[152] / -0$ |
| 11640 [301248] $<$ L $\leq$ 11820 [305904] = $+134[152] / -0$ |
| 11820 [305904] $<$ L $\leq$ 12000 [310560] = $+136[152] / -0$ |
| 12000 [310560] $<$ L $\leq$ 12180 [315216] = $+138[152] / -0$ |
| 12180 [315216] $<$ L $\leq$ 12360 [319872] = $+140[152] / -0$ |
| 12360 [319872] $<$ L $\leq$ 12540 [324528] = $+142[152] / -0$ |
| 12540 [324528] $<$ L $\leq$ 12720 [329184] = $+144[152] / -0$ |
| 12720 [329184] $<$ L $\leq$ 12900 [333840] = $+146[152] / -0$ |
| 12900 [333840] $<$ L $\leq$ 13080 [338496] = $+148[152] / -0$ |
| 13080 [338496] $<$ L $\leq$ 13260 [343152] = $+150[152] / -0$ |
| 13260 [343152] $<$ L $\leq$ 13440 [347808] = $+152[152] / -0$ |
| 13440 [347808] $<$ L $\leq$ 13620 [352464] = $+154[152] / -0$ |
| 13620 [352464] $<$ L $\leq$ 13800 [357120] = $+156[152] / -0$ |
| 13800 [357120] $<$ L $\leq$ 13980 [361776] = $+158[152] / -0$ |
| 13980 [361776] $<$ L $\leq$ 14160 [366432] = $+160[152] / -0$ |
| 14160 [366432] $<$ L $\leq$ 14340 [371088] = $+162[152] / -0$ |
| 14340 [371088] $<$ L $\leq$ 14520 [375744] = $+164[152] / -0$ |
| 14520 [375744] $<$ L $\leq$ 14700 [380400] = $+166[152] / -0$ |
| 14700 [380400] $<$ L $\leq$ 14880 [385056] = $+168[152] / -0$ |
| 14880 [385056] $<$ L $\leq$ 15060 [389712] = $+170[152] / -0$ |
| 15060 [389712] $<$ L $\leq$ 15240 [394368] = $+172[152] / -0$ |
| 15240 [394368] $<$ L $\leq$ 15420 [399024] = $+174[152] / -0$ |
| 15420 [399024] $<$ L $\leq$ 15600 [403680] = $+176[152] / -0$ |
| 15600 [403680] $<$ L $\leq$ 15780 [408336] = $+178[152] / -0$ |
| 15780 [408336] $<$ L $\leq$ 15960 [412992] = $+180[152] / -0$ |
| 15960 [412992] $<$ L $\leq$ 16140 [417648] = $+182[152] / -0$ |
| 16140 [417648] $<$ L $\leq$ 16320 [422304] = $+184[152] / -0$ |
| 16320 [422304] $<$ L $\leq$ 16500 [426960] = $+186[152] / -0$ |
| 16500 [426960] $<$ L $\leq$ 16680 [431616] = $+188[152] / -0$ |
| 16680 [431616] $<$ L $\leq$ 16860 [436272] = $+190[152] / -0$ |
| 16860 [436272] $<$ L $\leq$ 17040 [440928] = $+192[152] / -0$ |
| 17040 [440928] $<$ L $\leq$ 17220 [445584] = $+194[152] / -0$ |
| 17220 [445584] $<$ L $\leq$ 17400 [450240] = $+196[152] / -0$ |
| 17400 [450240] $<$ L $\leq$ 17580 [454896] = $+198[152] / -0$ |
| 17580 [454896] $<$ L $\leq$ 17760 [459552] = $+200[152] / -0$ |
| 17760 [459552] $<$ L $\leq$ 17940 [464208] = $+202[152] / -0$ |
| 17940 [464208] $<$ L $\leq$ 18120 [468864] = $+204[152] / -0$ |
| 18120 [468864] $<$ L $\leq$ 18300 [473520] = $+206[152] / -0$ |
| 18300 [473520] $<$ L $\leq$ 18480 [478176] = $+208[152] / -0$ |
| 18480 [478176] $<$ L $\leq$ 18660 [482832] = $+210[152] / -0$ |
| 18660 [482832] $<$ L $\leq$ 18840 [487488] = $+212[152] / -0$ |
| 18840 [487488] $<$ L $\leq$ 19020 [492144] = $+214[152] / -0$ |
| 19020 [492144] $<$ L $\leq$ 19200 [496700] = $+216[152] / -0$ |
| 19200 [496700] $<$ L $\leq$ 19380 [501356] = $+218[152] / -0$ |
| 19380 [501356] $<$ L $\leq$ 19560 [505912] = $+220[152] / -0$ |
| 19560 [505912] $<$ L $\leq$ 19740 [510568] = $+222[152] / -0$ |
| 19740 [510568] $<$ L $\leq$ 19920 [515224] = $+224[152] / -0$ |
| 19920 [515224] $<$ L $\leq$ 20100 [519880] = $+226[152] / -0$ |
| 20100 [519880] $<$ L $\leq$ 20280 [524536] = $+228[152] / -0$ |
| 20280 [524536] $<$ L $\leq$ 20460 [529192] = $+230[152] / -0$ |
| 20460 [529192] $<$ L $\leq$ 20640 [533848] = $+232[152] / -0$ |
| 20640 [533848] $<$ L $\leq$ 20820 [538504] = $+234[152] / -0$ |
| 20820 [538504] $<$ L $\leq$ 21000 [543160] = $+236[152] / -0$ |
| 21000 [543160] $<$ L $\leq$ 21180 [547816] = $+238[152] / -0$ |
| 21180 [547816] $<$ L $\leq$ 21360 [552472] = $+240[152] / -0$ |
| 21360 [552472] $<$ L $\leq$ 21540 [557128] = $+242[152] / -0$ |
| 21540 [557128] $<$ L $\leq$ 21720 [561784] = $+244[152] / -0$ |
| 21720 [561784] $<$ L $\leq$ 21900 [566440] = $+246[152] / -0$ |
| 21900 [566440] $<$ L $\leq$ 22080 [571096] = $+248[152] / -0$ |
| 22080 [571096] $<$ L $\leq$ 22260 [575752] = $+250[152] / -0$ |
| 22260 [575752] $<$ L $\leq$ 22440 [580408] = $+252[152] / -0$ |
| 22440 [580408] $<$ L $\leq$ 22620 [585064] = $+254[152] / -0$ |
| 22620 [585064] $<$ L $\leq$ 22800 [589720] = $+256[152] / -0$ |
| 22800 [589720] $<$ L $\leq$ 22980 [594376] = $+258[152] / -0$ |
| 22980 [594376] $<$ L $\leq$ 23160 [600032] = $+260[152] / -0$ |
| 23160 [600032] $<$ L $\leq$ 23340 [604688] = $+262[152] / -0$ |
| 23340 [604688] $<$ L $\leq$ 23520 [609344] = $+264[152] / -0$ |
| 23520 [609344] $<$ L $\leq$ 23700 [613900] = $+266[152] / -0$ |
| 23700 [613900] $<$ L $\leq$ 23880 [618556] = $+268[152] / -0$ |
| 23880 [618556] $<$ L $\leq$ 24060 [623212] =                  |