

C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215

RF Connectors Technical Data Sheet

PE4244

Configuration

- C Male Connector
- MIL-STD-348A
- 50 Ohms

- Right Angle Body Geometry
- Connector Interface Types: RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215

Features

- Max. Operating Frequency 3 GHz
- Good VSWR of 1.3:1

- Gold Plated Brass Contact

Applications

- General Purpose Test
- Custom Cable Assemblies

Description

Pasternack's PE4244 type C male right angle connector with clamp/solder attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216 and RG215 is part of our full line of RF components available for same-day shipping. Our type C male connector operates up to a maximum frequency of 3 GHz and offers good VSWR of 1.3:1. Its right angle body geometry allows for easier connections in tight spaces.

Our type C male right angle connector PE4244 datasheet specifications and drawing with dimensions are shown below in this PDF. Pasternack's broad catalog of RF, microwave and millimeter wave connectors allows designers to configure and customize their signal connections however they like. Whether the need is to provide an I/O for a board design, or simply create a custom cable assembly configuration, Pasternack has the right connector for the job. Pasternack can also expertly build your custom cable assemblies for you and ship same-day.

Electrical Specifications

Description	Minimum	Typical	Maximum	Units
Frequency Range	DC		3	GHz
VSWR			1.3:1	
Operating Voltage (AC)			1,000	Vrms

Mechanical Specifications

Size

Length	1.86 in [47.24 mm]
Width/Dia.	0.748 in [19.00 mm]
Height	1.327 in [33.71 mm]
Weight	0.179 lbs [81.19 g]

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215 PE4244](#)

C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215

RF Connectors Technical Data Sheet

PE4244

Material Specifications

Description	Material	Plating
Contact	Brass	Gold
Insulation	PTFE	
Body	Brass	Nickel 100 μ in minimum
Coupling Nut	Brass	Nickel 100 μ in minimum

Mechanical Specification Notes:

When attaching the connector to the cable use a clamp torque value of 60 to 65 in-lbs [6.78 to 7.34 Nm]

Environmental Specifications

Temperature

Operating Range

-65 to +165 deg C

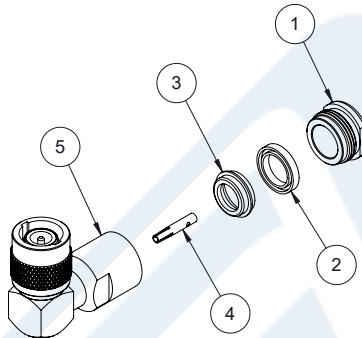
Compliance Certifications

(see [product page](#) for current document)

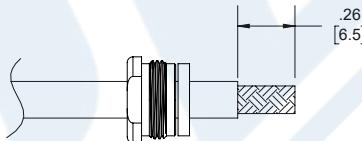
Plotted and Other Data

Notes:

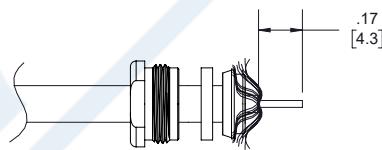
Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215 PE4244](#)

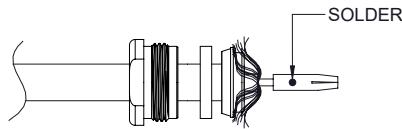


C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215


RF Connectors
Technical Data Sheet

PE4244


Assembly Instruction


1. SLIDE CLAMP NUT ① & GASKET ② OVER CABLE. STRIP CABLE AS SHOWN. DO NOT NICK BRAID WHILE CUTTING JACKET. TAPER END OF BRAID TO PERMIT ASSEMBLY OF CLAMP.

2. SLIDE BRAID CLAMP ③ OVER BRAID & SEAT AGAINST CABLE. FORM BRAID OVER CLAMP NUT. TRIM BRAID BACK TO SHOULDER. CUT DIELECTRIC TO DIMENSION SHOWN. DO NOT NICK CENTER CONDUCTOR.

3. SOLDER CONTACT ④ TO CENTER CONDUCTOR. REMOVE EXCESS SOLDER. DO NOT OVER HEAT DIELECTRIC. INSERT CABLE ASSEMBLY INTO BODY ⑤ & TIGHTEN.

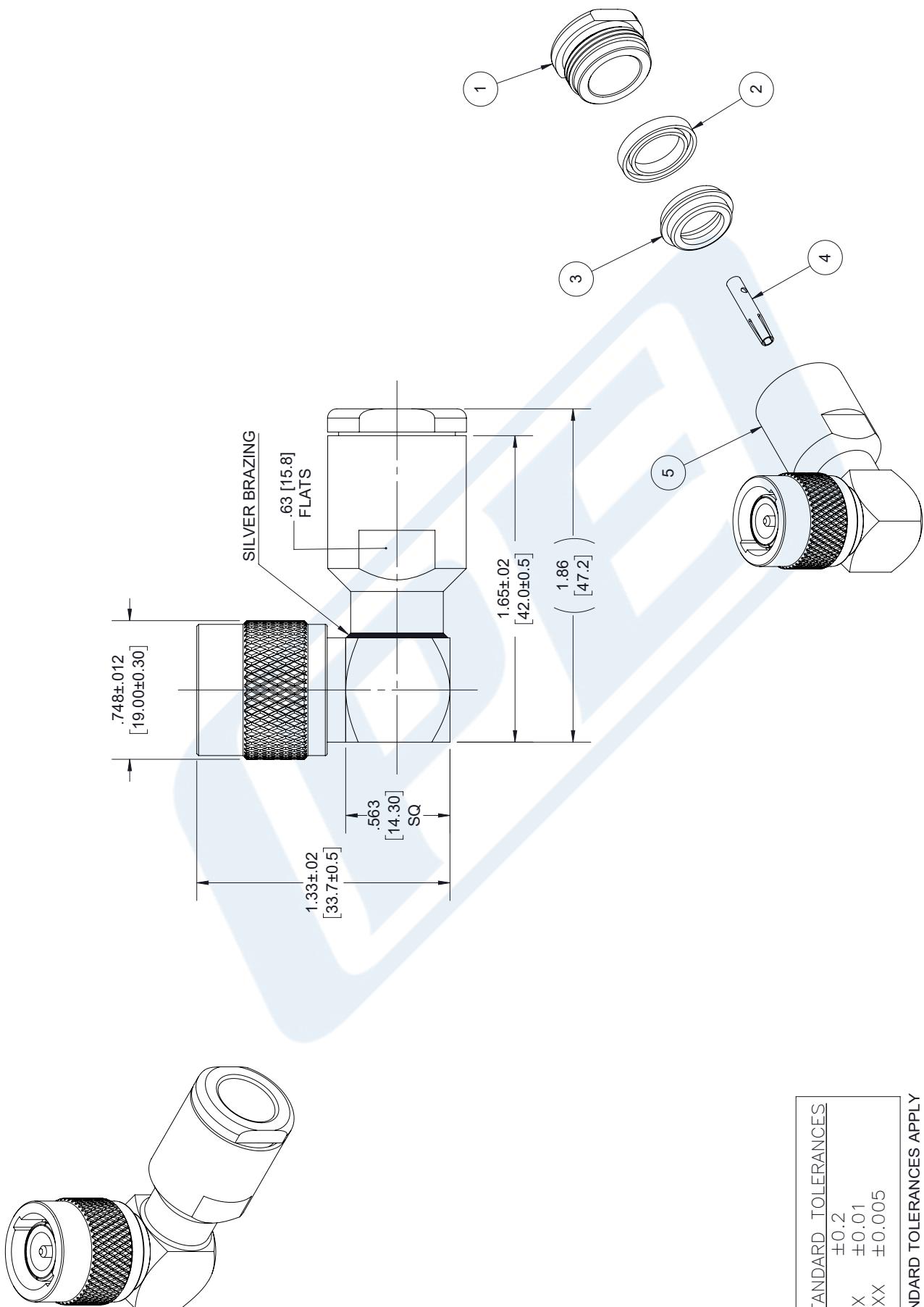
Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215 PE4244](#)

C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG16, RG215

RF Connectors
Technical Data Sheet

PE4244

C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG16, RG215 from Pasternack Enterprises has same day shipment for domestic and International orders. Our RF, microwave and millimeter wave products maintain a 99.4% availability and are part of the broadest selection in the industry.


Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG16, RG215 PE4244](#)

URL: <https://www.pasternack.com/c-male-standard-rg213-rg214-rg8-rg9-rg11-rg225-rg393-connector-pe4244-p.aspx>

The information contained in this document is accurate to the best of our knowledge and representative of the part described herein. It may be necessary to make modifications to the part and/or the documentation of the part, in order to implement improvements. Pasternack reserves the right to make such changes as required. Unless otherwise stated, all specifications are nominal. Pasternack does not make any representation or warranty regarding the suitability of the part described herein for any particular purpose, and Pasternack does not assume any liability arising out of the use of any part or documentation.

PE4244 CAD Drawing

C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215

STANDARD TOLERANCES	
.X	±0.2
.XX	±0.01
.XXX	±0.005

NOTES:
 1. UNLESS OTHERWISE SPECIFIED ALL DIMENSIONS ARE NOMINAL.
 2. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AT ANY TIME.
 3. DIMENSIONS ARE IN INCHES [mm].

DWG TITLE	PE4244	CAGE CODE	53919	CAD FILE	102517	SCALE	N/A	SIZE	A
PASTERNACK [®] THE ENGINEER'S RESOURCE	PASTERNACK Enterprises, Inc. P.O. Box 16759 Irvine CA 92623	Phone: (949) 261-1920 Fax: (949) 261-7451	Website: www.pasternack.com E-Mail: sales@pasternack.com						7361

C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215

RF Connectors Technical Data Sheet

PE4244

Configuration

- C Male Connector
- MIL-STD-348A
- 50 Ohms

- Right Angle Body Geometry
- Connector Interface Types: RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215

Features

- Max. Operating Frequency 3 GHz
- Good VSWR of 1.3:1

- Gold Plated Brass Contact

Applications

- General Purpose Test
- Custom Cable Assemblies

Description

Pasternack's PE4244 type C male right angle connector with clamp/solder attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216 and RG215 is part of our full line of RF components available for same-day shipping. Our type C male connector operates up to a maximum frequency of 3 GHz and offers good VSWR of 1.3:1. Its right angle body geometry allows for easier connections in tight spaces.

Our type C male right angle connector PE4244 datasheet specifications and drawing with dimensions are shown below in this PDF. Pasternack's broad catalog of RF, microwave and millimeter wave connectors allows designers to configure and customize their signal connections however they like. Whether the need is to provide an I/O for a board design, or simply create a custom cable assembly configuration, Pasternack has the right connector for the job. Pasternack can also expertly build your custom cable assemblies for you and ship same-day.

Electrical Specifications

Description	Minimum	Typical	Maximum	Units
Frequency Range	DC		3	GHz
VSWR			1.3:1	
Operating Voltage (AC)			1,000	Vrms

Mechanical Specifications

Size

Length	1.86 in [47.24 mm]
Width/Dia.	0.748 in [19.00 mm]
Height	1.327 in [33.71 mm]
Weight	0.179 lbs [81.19 g]

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215 PE4244](#)

C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215

RF Connectors Technical Data Sheet

PE4244

Material Specifications

Description	Material	Plating
Contact	Brass	Gold
Insulation	PTFE	
Body	Brass	Nickel 100 μ in minimum
Coupling Nut	Brass	Nickel 100 μ in minimum

Mechanical Specification Notes:

When attaching the connector to the cable use a clamp torque value of 60 to 65 in-lbs [6.78 to 7.34 Nm]

Environmental Specifications

Temperature

Operating Range

-65 to +165 deg C

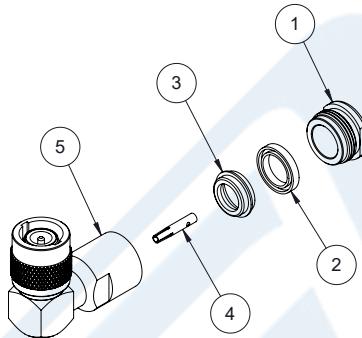
Compliance Certifications

(see [product page](#) for current document)

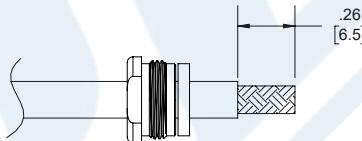
Plotted and Other Data

Notes:

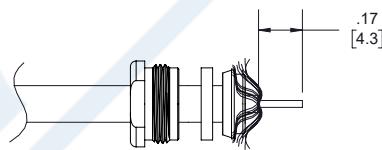
Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215 PE4244](#)

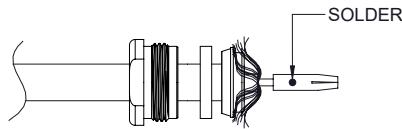


C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215


RF Connectors
Technical Data Sheet

PE4244


Assembly Instruction


1. SLIDE CLAMP NUT ① & GASKET ② OVER CABLE. STRIP CABLE AS SHOWN. DO NOT NICK BRAID WHILE CUTTING JACKET. TAPER END OF BRAID TO PERMIT ASSEMBLY OF CLAMP.

2. SLIDE BRAID CLAMP ③ OVER BRAID & SEAT AGAINST CABLE. FORM BRAID OVER CLAMP NUT. TRIM BRAID BACK TO SHOULDER. CUT DIELECTRIC TO DIMENSION SHOWN. DO NOT NICK CENTER CONDUCTOR.

3. SOLDER CONTACT ④ TO CENTER CONDUCTOR. REMOVE EXCESS SOLDER. DO NOT OVER HEAT DIELECTRIC. INSERT CABLE ASSEMBLY INTO BODY ⑤ & TIGHTEN.

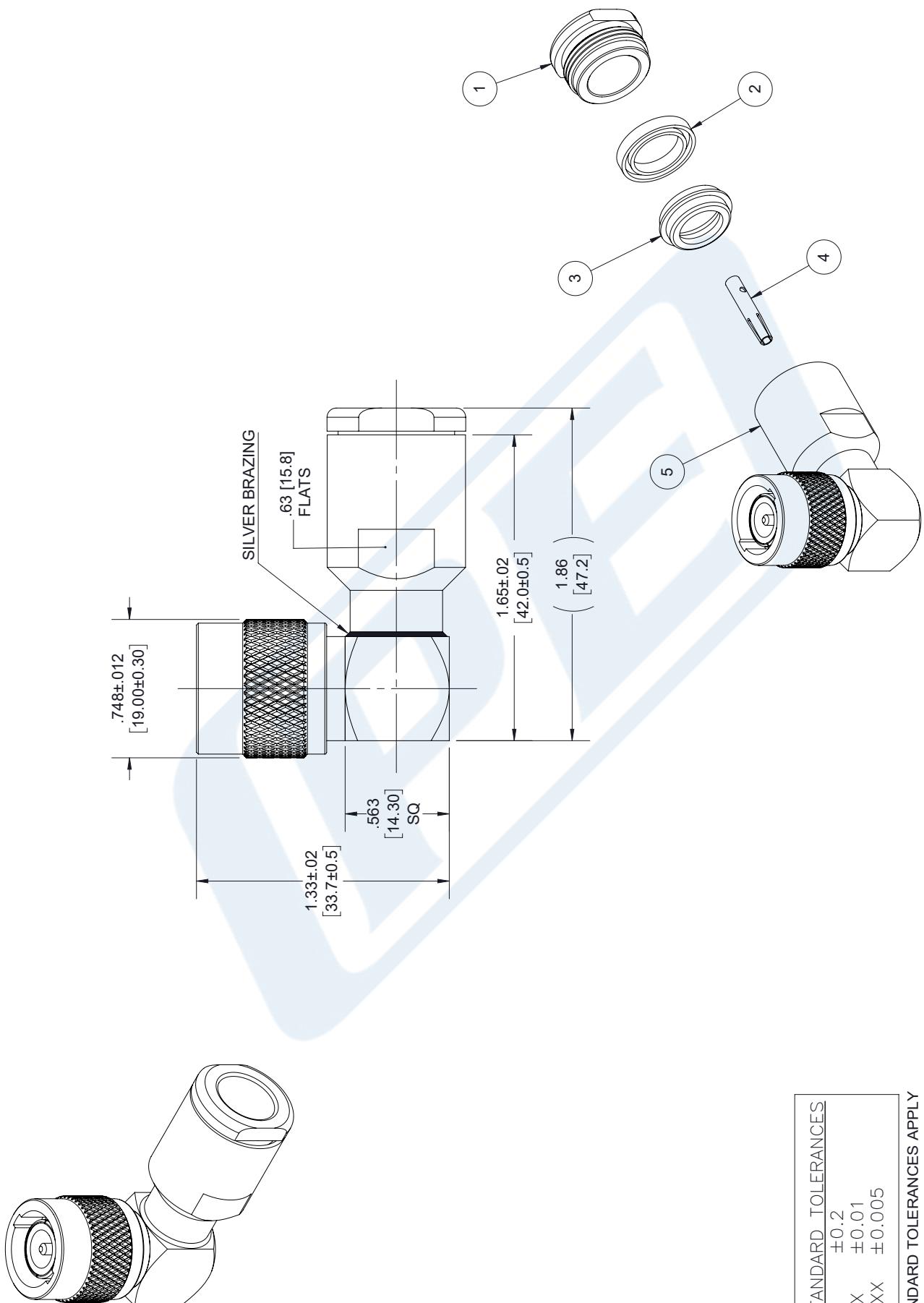
Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215 PE4244](#)

C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG16, RG215

RF Connectors
Technical Data Sheet

PE4244

C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG16, RG215 from Pasternack Enterprises has same day shipment for domestic and International orders. Our RF, microwave and millimeter wave products maintain a 99.4% availability and are part of the broadest selection in the industry.


Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG16, RG215 PE4244](#)

URL: <https://www.pasternack.com/c-male-standard-rg213-rg214-rg8-rg9-rg11-rg225-rg393-connector-pe4244-p.aspx>

The information contained in this document is accurate to the best of our knowledge and representative of the part described herein. It may be necessary to make modifications to the part and/or the documentation of the part, in order to implement improvements. Pasternack reserves the right to make such changes as required. Unless otherwise stated, all specifications are nominal. Pasternack does not make any representation or warranty regarding the suitability of the part described herein for any particular purpose, and Pasternack does not assume any liability arising out of the use of any part or documentation.

PE4244 CAD Drawing

C Male Right Angle Connector Clamp/Solder Attachment for RG213, RG214, RG8, RG9, RG11, RG225, RG393, RG144, RG216, RG215

NOTES:	
1.	UNLESS OTHERWISE SPECIFIED ALL DIMENSIONS ARE NOMINAL.
2.	ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AT ANY TIME.
3.	DIMENSIONS ARE IN INCHES [mm].
DWG TITLE	PE4244
CAGE CODE	53919
CAD FILE	102517
SCALE	N/A
SIZE	A
	7361

Flexible RG393 Coax Cable Double Shielded with Tan FEP Jacket

RF Cables Technical Data Sheet

RG393/U

Configuration

- Flexible Cable
- 2 Shield(s)

Features

- 50 Ohm Impedance
- Stranded Silver Plated Copper center conductor
- PTFE dielectric
- Double Silver Plated Copper Braid
- FEP Jacket Material 0.390 in diameter

Electrical Specifications

Description	Minimum	Typical	Maximum	Units
Frequency Range	DC		10	GHz
Impedance		50		Ohms
Velocity of Propagation		69.5		%
Nominal Capacitance		29.4 [96.46]		pF/ft [pF/m]

Performance by Frequency Band

Description	F1	F2	F3	F4	F5	Units
Frequency	0.01	0.1	1	5	10	GHz
Attenuation, Typ	0.6	2.1	7.5	21	35	dB/100ft
	1.97	6.89	24.61	68.9	114.83	dB/100m
Input Power (CW), Max	25,000	6,300	1,700	620	350	Watts

Mechanical Specifications

Diameter 0.39 in [9.91 mm]
 Weight 0.157 lbs/ft [0.23 Kg/m]

Min. Bend Radius (Repeated) 3.9 in [99.06 mm]

Construction Specifications

Description	Material and Plating	Diameter
Inner Conductor	Copper, Silver7	0.094 in 2.39 mm
Conductor Type	Stranded	

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [Flexible RG393 Coax Cable Double Shielded with Tan FEP Jacket RG393/U](#)

Flexible RG393 Coax Cable Double Shielded with Tan FEP Jacket

RF Cables Technical Data Sheet

RG393/U

Dielectric	PTFE	0.285 in 7.24 mm
First Shield	Silver Plated Copper Braid 90% coverage	0.313 in 7.95 mm
Second Shield	Silver Plated Copper Braid 90% coverage	0.341 in 8.66 mm
Jacket	FEP, Tan	0.39 in [9.91 mm]

Environmental Specifications

Temperature

Operating Range

-55 to +200 deg C

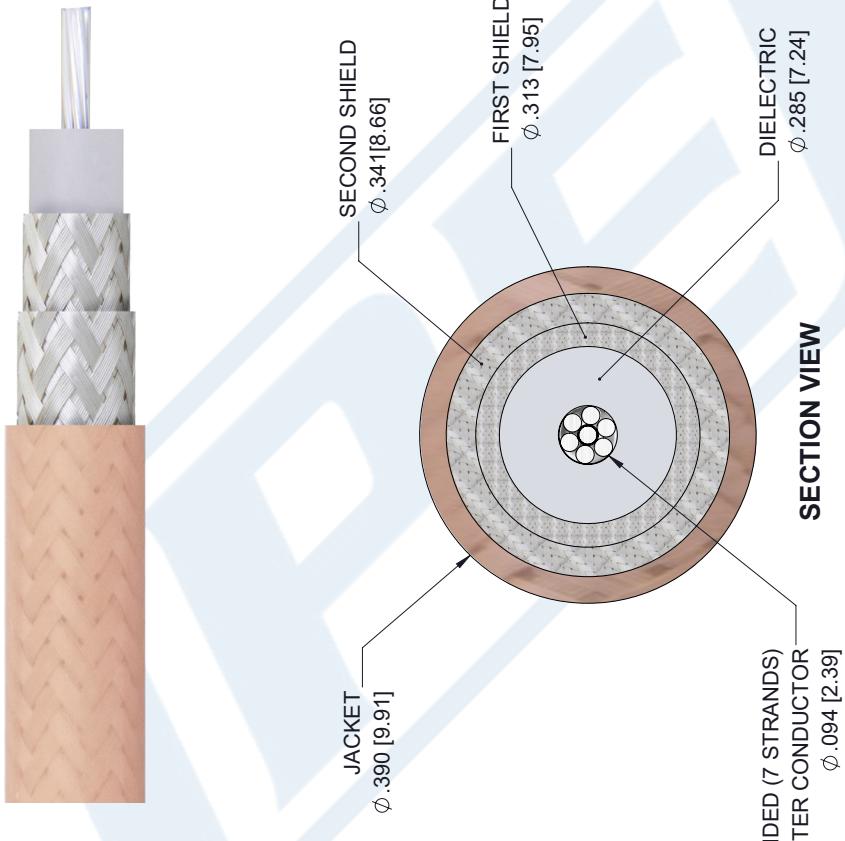
Compliance Certifications (see [product page](#) for current document)

Plotted and Other Data

Notes:

Flexible RG393 Coax Cable Double Shielded with Tan FEP Jacket from Pasternack Enterprises has same day shipment for domestic and International orders. Our RF, microwave and millimeter wave products maintain a 99.4% availability and are part of the broadest selection in the industry.

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [Flexible RG393 Coax Cable Double Shielded with Tan FEP Jacket RG393/U](#)


URL: <https://www.pasternack.com/flexible-rg393u-fep-jacket-silver-plated-copper-braid-over-silver-plated-copper-braid-outer-conductor-double-shielded-rg393-u-p.aspx>

The information contained in this document is accurate to the best of our knowledge and representative of the part described herein. It may be necessary to make modifications to the part and/or the documentation of the part, in order to implement improvements. Pasternack reserves the right to make such changes as required. Unless otherwise stated, all specifications are nominal. Pasternack does not make any representation or warranty regarding the suitability of the part described herein for any particular purpose, and Pasternack does not assume any liability arising out of the use of any part or documentation.

RG393/U CAD Drawing

Flexible RG393 Coax Cable Double Shielded with Tan FEP Jacket

REVISIONS			
REV.	DESCRIPTION	DATE	APPROVED
A	PCR RG393/U	1/8/2020	S.ELLIS

<p>UNLESS OTHERWISE SPECIFIED LEADING DIMENSIONS ARE INCHES DIMENSIONS IN [] ARE MILLIMETERS</p> <p>TOLERANCES:</p> <table border="0"> <tr> <td>$X = \pm 2$</td><td>$[.08]$</td><td>FRACTIONS</td></tr> <tr> <td>$.XX = \pm .02$</td><td>$[.51]$</td><td>$\pm 1/32$</td></tr> <tr> <td>$.XXX = \pm .005$</td><td>$[.13]$</td><td>ANGLES $\pm 1^\circ$</td></tr> </table> <p>CABLE LENGTH (L) TOLERANCES:</p> <table border="0"> <tr> <td>$L \leq 12$ [305]</td><td>± 1 [25]</td><td>-0</td></tr> <tr> <td>$12 [305] < L \leq 60$ [1524]</td><td>± 2 [51]</td><td>-0</td></tr> <tr> <td>$60 [1524] < L \leq 120$ [3048]</td><td>± 4 [102]</td><td>$/ -0$</td></tr> <tr> <td>$120 [3048] < L \leq 300$ [7620]</td><td>± 6 [152]</td><td>$/ -0$</td></tr> <tr> <td>$300 [7620] < L = 450$ [L]</td><td>± 10 [L]</td><td>$/ -0$</td></tr> </table> <p>ALL DIMENSIONS SHOWN ARE FOR REFERENCE ONLY.</p>	$X = \pm 2$	$[.08]$	FRACTIONS	$.XX = \pm .02$	$[.51]$	$\pm 1/32$	$.XXX = \pm .005$	$[.13]$	ANGLES $\pm 1^\circ$	$L \leq 12$ [305]	± 1 [25]	-0	$12 [305] < L \leq 60$ [1524]	± 2 [51]	-0	$60 [1524] < L \leq 120$ [3048]	± 4 [102]	$/ -0$	$120 [3048] < L \leq 300$ [7620]	± 6 [152]	$/ -0$	$300 [7620] < L = 450$ [L]	± 10 [L]	$/ -0$	<p>THIRD ANGLE PROJECTION</p> <p>THE INFORMATION AND DESIGN IN THIS DOCUMENT IS THE PROPERTY OF PASTERNAK CORPORATION ALL RIGHTS RESERVED.</p> <p>PASTERNAK an INFINITE® brand</p> <p>Pasterнак Enterprises, Inc. P.O. Box 16759, Irvine, CA 92623. Phone: 1.949.261.1920 1.866.727.8376 Fax: 1.949.261.7451 Website: www.pasterнак.com E-mail: sales@pasterнак.com</p> <p>SHEET 1 OF 1 SCALE N/A ITEM NO. RG393/U DRAWN BY K. DANG CAGE CODE 53919 SIZE A REV A</p>
$X = \pm 2$	$[.08]$	FRACTIONS																							
$.XX = \pm .02$	$[.51]$	$\pm 1/32$																							
$.XXX = \pm .005$	$[.13]$	ANGLES $\pm 1^\circ$																							
$L \leq 12$ [305]	± 1 [25]	-0																							
$12 [305] < L \leq 60$ [1524]	± 2 [51]	-0																							
$60 [1524] < L \leq 120$ [3048]	± 4 [102]	$/ -0$																							
$120 [3048] < L \leq 300$ [7620]	± 6 [152]	$/ -0$																							
$300 [7620] < L = 450$ [L]	± 10 [L]	$/ -0$																							

THESE COMMODITIES, TECHNOLOGY OR SOFTWARE WERE EXPORTED FROM THE UNITED STATES IN ACCORDANCE
WITH THE EXPORT ADMINISTRATION REGULATIONS. DIVERSION CONTRARY TO U.S. LAW PROHIBITED.