


**NOTICE OF PROPRIETARY RIGHTS** THIS DOCUMENT CONTAINS CONFIDENTIAL TECHNICAL DATA, INCLUDING TRADE SECRETS, PROPRIETARY TO TIMES MICROWAVE SYSTEMS. DISCLOSURE OF THIS DATA IS EXPRESSLY CONDITIONED UPON YOUR ASSENT THAT ITS USE IS LIMITED TO USE WITHIN YOUR COMPANY ONLY. ANY OTHER USE IS STRICTLY PROHIBITED WITHOUT THE PRIOR WRITTEN CONSENT OF TIMES MICROWAVE SYSTEMS.

| DRAWING NUMBER | SYM | REVISION DESCRIPTION         | DFTM   | DATE    | APPD   | DATE    |
|----------------|-----|------------------------------|--------|---------|--------|---------|
|                | A   | RELEASED FOR PRODUCTION      | X.A.m. | 6/3/11  | J.D.B. | 6/3/11  |
|                | B   | CHANGED PER CDC #34607/36250 | D.J.H. | 9/24/12 | J.D.B. | 9/25/12 |

RECOMMENDED CABLE  
STRIPPING DIM'S.



## NOTES:

1. CONTACT PIN IS SOLDERED.
2. FERRULE IS CRIMPED TO .429" HEX.

ALL PARTS SATISFIED ROHS REQUIREMENTS

| MATERIALS AND PLATING |                    | UNIT: MICRO-INCHES        |
|-----------------------|--------------------|---------------------------|
| BODY/SHELL            | BRASS C3604        | ALBALOY 80 MIN/COPPER     |
| CONTACT PIN           | BRASS C3604        | GOLD 50 MIN/NICKEL/COPPER |
| INSULATOR             | TEFLON MIL-P-19468 | N/A                       |
| GASKET                | SILICONE           | RED                       |
| FERRULE               | BRASS              | ALBALOY 80 MIN/COPPER     |
| SHRINK TUBING         | PO                 | BLACK                     |

## ELECTRICAL CHARACTERISTICS

|                                    |                                            |
|------------------------------------|--------------------------------------------|
| Impedance                          | 50 Ω                                       |
| Frequency range                    | 0~11GHz                                    |
| Voltage rating                     | 500V(rms)                                  |
| Dielectric<br>withstanding voltage | 1000V                                      |
| Contact resistance                 | Center contact≤3 mΩ<br>Outer contact≤2 m Ω |
| Insulation resistance              | ≥5000MΩ                                    |
| Insertion loss                     | According to the cable                     |
| RF- leakage                        | N/A                                        |
| VSWR                               | ≤1.35 MAX@0-6GHz                           |

## MECHANICAL CHARACTERISTICS

| MECHANICAL CHARACTERISTICS     |               |
|--------------------------------|---------------|
| Force to engage and disengage  | N/A           |
| Center contact retention force | 6 lbs Min     |
| Coupling torque                | 15 in-lbs Min |
| Coupling nut retention force   | 60 lbs Min    |
| Durability                     | ≥ 500 cycles  |

## ENVIRONMENTAL CHARACTERISTICS

| ENVIRONMENTAL CHARACTERISTICS |                               |
|-------------------------------|-------------------------------|
| Temperature range             | -55°C- +125°C                 |
| Thermal Shock                 | MIL-STD-202,Method 107,Cond B |
| Vibration                     | MIL-STD-202,Method 204,Cond B |
| Shock                         | MIL-STD-202,Method 213,Cond I |
| Climatic Class                | IEC 60068 55/155/56           |

|              |                                                                                                                                                        |                                                 |                                                    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|
| MATERIAL:    | UNLESS OTHERWISE SPECIFIED                                                                                                                             | DFTM. K. A. M.                                  | TIMES MICROWAVE SYSTEMS                            |
|              | ALL DIMENSIONS ARE IN mm<br>MACHINED SURFACES FINISH 1.6 RMS MAX.<br>REMOVE ALL BURRS 0.15X45° MAX. BREAK<br>MACHINE CORNERS 0.15X45° D MAX. FILLET R. | DATE 6/3/11                                     |                                                    |
| USED ON: 0-4 | TOLERANCES ON DECIMALS<br>. X ± 0.3      . XX ± 0.2<br>ANGLES ± 1°      FRACTIONS ± N/A                                                                | CHKD. J. D. B.<br>DATE 6/3/11<br>APPD. J. D. B. | TC-400-TM-RA-D<br>90° TNC MALE<br>FOR LMR400 CABLE |
|              | SCALE: N/A      DWG. SIZE A                                                                                                                            | CODE IDENT 68999      DATE 6/3/11               |                                                    |
| SHEET 1 of 1 |                                                                                                                                                        | SD3190-2671                                     | REV. B                                             |

RP TNC Male Connector Crimp/Solder Attachment  
 for PE-C400, PE-B400, PE-B405, LMR-400,  
 LMR-400-DB, LMR-400-UF, 0.400 inch



## RF Connectors Technical Data Sheet

PE44672

### Configuration

- TNC Male Reverse Polarity Connector
- 50 Ohms
- Straight Body Geometry

- PE-C400, PE-B400, PE-B405, LMR-400, LMR-400-DB, LMR-400-UF, 0.400 inch Interface Type
- Crimp/Solder Attachment

### Features

- Max. Operating Frequency 11 GHz
- Gold Plated Phosphor Bronze Contact

- Reverse Polarity

### Applications

- General Purpose Test
- Custom Cable Assemblies

### Description

Pasternack's PE44672 RP TNC male connector with crimp/solder attachment for PE-C400, PE-B400, PE-B405, LMR-400, LMR-400-DB, LMR-400-UF and 0.400 inch is part of our full line of RF components available for same-day shipping. The male reverse polarity configuration uses a male connector body with a female inner contact receptacle. Our TNC male connector operates up to a maximum frequency of 11 GHz.

Our reverse polarity TNC male connector PE44672 datasheet specifications and drawing with dimensions are shown below in this PDF. Pasternack's broad catalog of RF, microwave and millimeter wave connectors allows designers to configure and customize their signal connections however they like. Whether the need is to provide an I/O for a board design, or simply create a custom cable assembly configuration, Pasternack has the right connector for the job. Pasternack can also expertly build your custom cable assemblies for you and ship same-day.

### Electrical Specifications

| Description     | Minimum | Typical | Maximum | Units |
|-----------------|---------|---------|---------|-------|
| Frequency Range | DC      |         | 11      | GHz   |

### Mechanical Specifications

#### Size

Length

1.75 in [44.45 mm]

Width/Dia.

0.59 in [14.99 mm]

Weight

0.058 lbs [26.31 g]

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [RP TNC Male Connector Crimp/Solder Attachment for PE-C400, PE-B400, PE-B405, LMR-400, LMR-400-DB, LMR-400-UF, 0.400 inch PE44672](#)

RP TNC Male Connector Crimp/Solder Attachment  
 for PE-C400, PE-B400, PE-B405, LMR-400,  
 LMR-400-DB, LMR-400-UF, 0.400 inch



## RF Connectors Technical Data Sheet

PE44672

### Material Specifications

| Description  | Material        | Plating |
|--------------|-----------------|---------|
| Contact      | Phosphor Bronze | Gold    |
| Insulation   | PTFE            |         |
| Body         | Brass           | Nickel  |
| Coupling Nut | Brass           | Nickel  |

### Environmental Specifications

#### Temperature

Operating Range

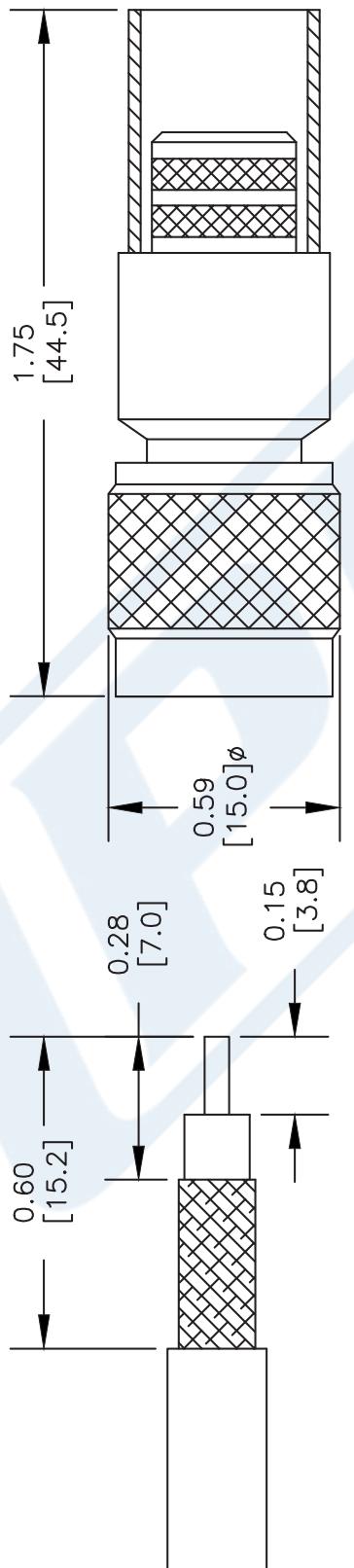
-65 to +165 deg C

**Compliance Certifications** (see [product page](#) for current document)

### Plotted and Other Data

Notes:

RP TNC Male Connector Crimp/Solder Attachment for PE-C400, PE-B400, PE-B405, LMR-400, LMR-400-DB, LMR-400-UF, 0.400 inch from Pasternack Enterprises has same day shipment for domestic and International orders. Our RF, microwave and millimeter wave products maintain a 99% availability and are part of the broadest selection in the industry.


Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [RP TNC Male Connector Crimp/Solder Attachment for PE-C400, PE-B400, PE-B405, LMR-400, LMR-400-DB, LMR-400-UF, 0.400 inch PE44672](#)

URL: <https://www.pasternack.com/tnc-male-reverse-polarity-pe-c400-0.400-connector-pe44672-p.aspx>

The information contained in this document is accurate to the best of our knowledge and representative of the part described herein. It may be necessary to make modifications to the part and/or the documentation of the part, in order to implement improvements. Pasternack reserves the right to make such changes as required. Unless otherwise stated, all specifications are nominal. Pasternack does not make any representation or warranty regarding the suitability of the part described herein for any particular purpose, and Pasternack does not assume any liability arising out of the use of any part or documentation.

# PE44672 CAD Drawing

RP TNC Male Connector Crimp/Solder Attachment for PE-C400, PE-B400, PE-B405, LMR-400, LMR-400-DB, LMR-400-UF, 0.400 inch



| DWG TITLE  | PE44672 | NOTES:                                                                                                                                                                                                               |
|------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PASTERNAK® |         | 1. UNLESS OTHERWISE SPECIFIED ALL DIMENSIONS ARE NOMINAL.<br>2. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AT ANY TIME.<br>3. DIMENSIONS ARE IN INCHES [mm].<br>4. FITS MIL-C-17 AND EQUIVALENT CABLES. |
| FSCM NO.   | 53919   | CAD FILE                                                                                                                                                                                                             |
|            | 102009  | SCALE N/A                                                                                                                                                                                                            |
|            |         | SIZE A                                                                                                                                                                                                               |
|            |         | XXXX                                                                                                                                                                                                                 |

## Low Loss Flexible LMR-400 Outdoor Rated Coax Cable Double Shielded with Black PE Jacket



### LMR-400



### Times Microwave Systems Connector Specification

#### Configuration

- Low Loss, Outdoor Flexible Cable
- 2 Shield(s)

#### Features

- Flexible Low Loss Communications Coax
- Max Operating Frequency of 8 GHz
- Replacement for Air Dielectric type RG8 cable
- Double Shields provides RF Shielding in excess of 90 db
- Low Loss size for size compared to standard flexible cable

#### Applications

- Laboratory Applications
- General Purpose RF Interconnect

#### Description

LMR-400 part number from Pasternack is a LMR-400 coax cable that is flexible. Pasternack LMR-400 flexible coax cable is 50 Ohm and has a PE (F) dielectric. Our LMR-400 coax is constructed with a 0.405 jacket made of PE. LMR-400 coax has a shield count of 2, a RF shielding of 90 dB and the maximum frequency for this Pasternack cable is 8 GHz. LMR-400 coax cable has an attenuation at 1 GHz of 4.25 dB.

Pasternack LMR-400 coax cables are part of over 40,000 RF, microwave and millimeter wave components. LMR-400 cables and our other RF parts are available for same day shipping worldwide. Custom RF cable assemblies using LMR-400 or other coax can be built and shipped same day as well.

\* LMR™ is a trademark of Times Microwave Systems.

#### Electrical Specifications

| Description                          | Minimum      | Typical    | Maximum | Units        |
|--------------------------------------|--------------|------------|---------|--------------|
| Frequency Range                      | DC           |            | 8       | GHz          |
| Impedance                            |              | 50         |         | Ohms         |
| Velocity of Propagation              |              | 85         |         | %            |
| Time Delay                           |              | 1.2 [3.94] |         | ns/ft [ns/m] |
| Shielding Effectiveness              | 90           |            |         | dB           |
| Dielectric Withstanding Voltage (DC) |              |            | 2,500   | Vdc          |
| Jacket Spark                         |              |            | 8,000   | Vrms         |
| Inner Conductor DC Resistance        |              |            | 1.39    | Ohms/1000ft  |
| Outer Conductor DC Resistance        |              |            | 1.65    | Ohms/1000ft  |
| Nominal Capacitance                  | 23.9 [78.41] |            |         | pF/ft [pF/m] |
| Nominal Inductance                   | 0.06 [0.2]   |            |         | uH/ft [uH/m] |
| Input Power (Peak)                   |              |            | 16      | kWatts       |

## Low Loss Flexible LMR-400 Outdoor Rated Coax Cable Double Shielded with Black PE Jacket



### LMR-400

#### Performance by Frequency Band

| Description           | F1    | F2    | F3    | F4   | F5   | Units    |
|-----------------------|-------|-------|-------|------|------|----------|
| Frequency             | 50    | 150   | 220   | 450  | 900  | MHz      |
| Attenuation, Typ      | 0.9   | 1.5   | 1.9   | 2.7  | 3.9  | dB/100ft |
|                       | 2.95  | 4.92  | 6.23  | 8.86 | 12.8 | dB/100m  |
| Input Power (CW), Max | 2,570 | 1,470 | 1,200 | 830  | 580  | Watts    |

| Description           | F6    | F7   | F8    | F9    | F10   | Units    |
|-----------------------|-------|------|-------|-------|-------|----------|
| Frequency             | 1.5   | 1.8  | 2     | 2.5   | 8     | GHz      |
| Attenuation, Typ      | 5.1   | 5.7  | 6     | 6.8   | 10.8  | dB/100ft |
|                       | 16.73 | 18.7 | 19.69 | 22.31 | 35.43 | dB/100m  |
| Input Power (CW), Max | 440   | 400  | 370   | 330   | 210   | Watts    |

#### Mechanical Specifications

|                                 |                         |
|---------------------------------|-------------------------|
| Diameter                        | 0.405 in [10.29 mm]     |
| Weight                          | 0.067 lbs/ft [0.1 kg/m] |
| Min. Bend Radius (Installation) | 1 in [25.4 mm]          |
| Min. Bend Radius (Repeated)     | 4 in [101.6 mm]         |
| Bending Moment                  | 0.5 lbs-ft [0.68 N-m]   |
| Tensile Strength                | 160 lbs [72.57 kg]      |
| Flat Plate Crush                | 40 lbs/in [0.71 kg/mm]  |

#### Construction Specifications

| Description     | Material and Plating           | Diameter            |
|-----------------|--------------------------------|---------------------|
| Inner Conductor | Copper Clad Aluminum, 1 Strand | 0.108 in [2.74 mm]  |
| Conductor Type  | Solid                          |                     |
| Dielectric      | PE (F)                         | 0.285 in [7.24 mm]  |
| First Shield    | Aluminum Tape                  | 0.29 in [7.37 mm]   |
| Second Shield   | Tinned Copper Braid            | 0.32 in [8.13 mm]   |
| Jacket          | PE, Black                      | 0.405 in [10.29 mm] |

#### Environmental Specifications

| Temperature     |                 |
|-----------------|-----------------|
| Operating Range | -40 to 85 deg C |
| Storage Range   | -70 to 85 deg C |

**Compliance Certifications** (see [product page](#) for current document)

#### Plotted and Other Data

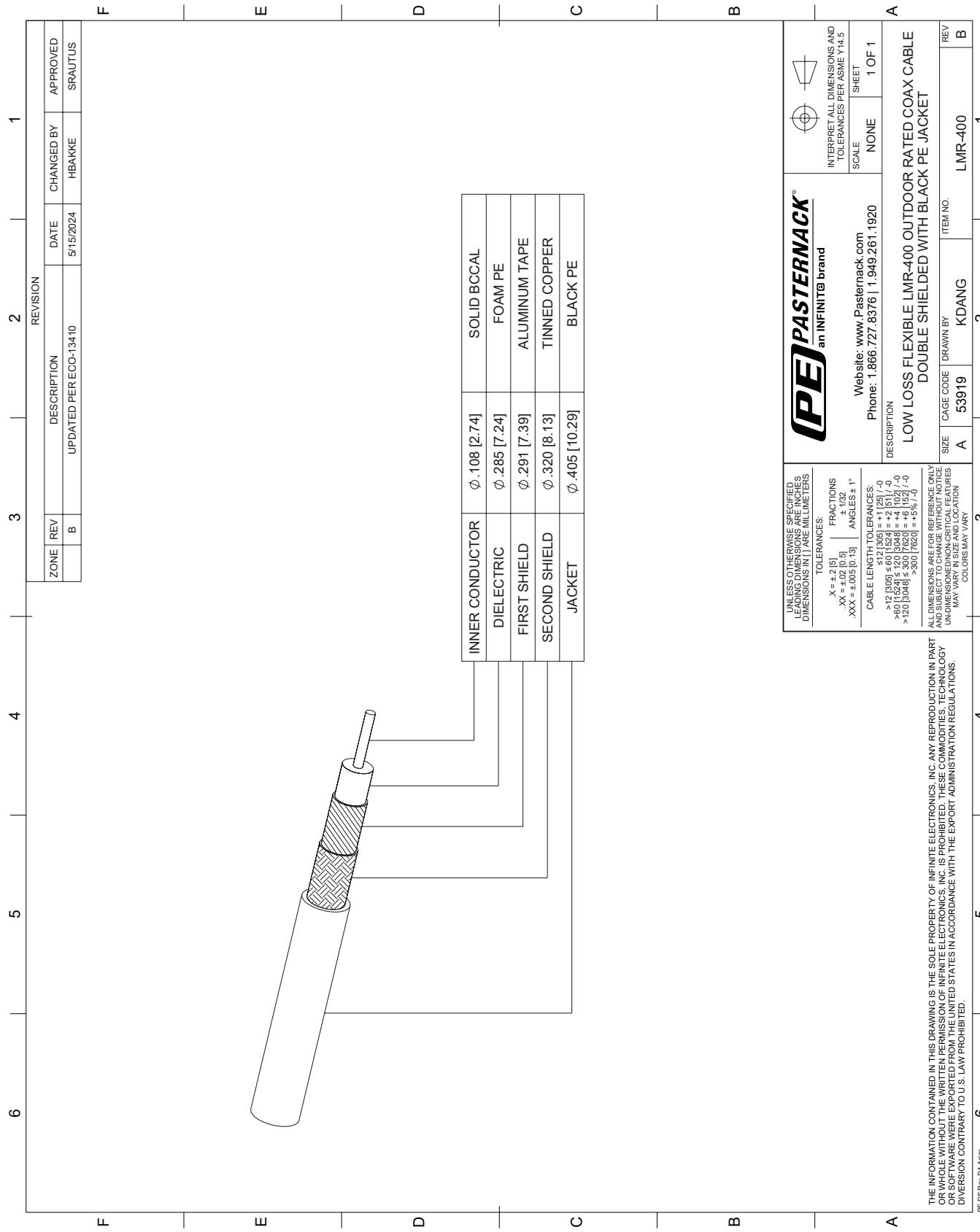
Notes:

## Low Loss Flexible LMR-400 Outdoor Rated Coax Cable Double Shielded with Black PE Jacket



### LMR-400

Low Loss Flexible LMR-400 Outdoor Rated Coax Cable Double Shielded with Black PE Jacket from Pasternack Enterprises has same day shipment for domestic and International orders. Our RF, microwave and millimeter wave products maintain a 99.4% availability and are part of the broadest selection in the industry.


Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [Low Loss Flexible LMR-400 Outdoor Rated Coax Cable Double Shielded with Black PE Jacket LMR-400](#)

URL: <https://www.pasternack.com/50-ohm-low-loss-flexible-lmr400-pe-jacket-double-shielded-black-lmr-400-p.aspx>

The information contained within this document is accurate to the best of our knowledge and representative of the part described herein. It may be necessary to make modifications to the part and/or the documentation of the part in order to implement improvements. Pasternack Enterprises reserves the right to make such changes as required. Unless otherwise stated, all specifications are nominal. Pasternack Enterprises does not make any representation or warranty regarding the suitability of the part described herein for any particular purpose, and Pasternack Enterprises does not assume liability arising out of the use of any part or document.

# LMR-400 CAD Drawing

Low Loss Flexible LMR-400 Outdoor Rated Coax Cable Double Shielded with Black PE Jacket



|                                                                     |                                        |                                                                                     |
|---------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------|
| <b>(PE) PASTERNACK®</b><br>an INFINITE brand                        |                                        | INTERPRET ALL DIMENSIONS AND<br>TOLERANCES PER ASME Y14.5<br>SCALE<br>SHEET<br>NONE |
| Website: <a href="http://www.pasternack.com">www.pasternack.com</a> | Phone: 1.866.727.8376   1.949.261.1920 |                                                                                     |

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN MILLIMETERS.  
TOLERANCES:  
 $X = \pm 2 [5]$       FRACTIONS  
 $XX = \pm 0.02 [0.5]$        $\pm 1/32$   
 $XXX = \pm 0.005 [0.3]$       ANGLES  $\pm 1^\circ$   
 CABLE LENGTH TOLERANCES:  
 $>12 [305] = \pm 0.152 [0]$        $= \pm 1.125 [0]$   
 $>180 [1524] = \pm 1.524 [0]$        $= \pm 2 [5]$   
 $>300 [7620] = \pm 4.4 [0]$        $= \pm 10.2 [0]$   
 $>450 [3658] = \pm 6.4 [0]$        $= \pm 15.2 [0]$   
 $>600 [5072] = \pm 9.6 [0]$        $= \pm 24 [5]$   
 $>900 [7560] = \pm 14.4 [0]$        $= \pm 36 [10]$   
 $>1200 [30480] = \pm 19.2 [0]$        $= \pm 54 [15]$   
 $>1800 [72768] = \pm 28.8 [0]$        $= \pm 81 [25]$   
 $>2700 [109440] = \pm 43.2 [0]$        $= \pm 123 [40]$   
 $>4000 [182880] = \pm 64 [0]$        $= \pm 184 [60]$   
 $>6000 [274320] = \pm 96 [0]$        $= \pm 276 [80]$   
 $>9000 [411520] = \pm 144 [0]$        $= \pm 414 [120]$   
 $>13500 [557120] = \pm 216 [0]$        $= \pm 618 [180]$   
 $>20250 [835680] = \pm 324 [0]$        $= \pm 927 [270]$   
 $>30375 [1253440] = \pm 486 [0]$        $= \pm 1454 [450]$   
 $>45562 [1880160] = \pm 729 [0]$        $= \pm 2187 [675]$   
 $>68343 [2820480] = \pm 1093 [0]$        $= \pm 3279 [1080]$   
 $>102515 [3780960] = \pm 1639 [0]$        $= \pm 4917 [1540]$   
 $>153773 [5371840] = \pm 2459 [0]$        $= \pm 7377 [2080]$   
 $>230660 [1875520] = \pm 3689 [0]$        $= \pm 11067 [3240]$   
 $>345990 [2813280] = \pm 5539 [0]$        $= \pm 16617 [5120]$   
 $>518985 [4220240] = \pm 8307 [0]$        $= \pm 24925 [7680]$   
 $>778478 [5630560] = \pm 12461 [0]$        $= \pm 37383 [11520]$   
 $>1167717 [7245680] = \pm 18691 [0]$        $= \pm 56073 [15360]$   
 $>1751576 [9863360] = \pm 27987 [0]$        $= \pm 83961 [25920]$   
 $>2627364 [12579520] = \pm 41981 [0]$        $= \pm 125943 [38880]$   
 $>3886046 [15395840] = \pm 62971 [0]$        $= \pm 188913 [51840]$   
 $>5629068 [18212160] = \pm 94457 [0]$        $= \pm 283771 [79680]$   
 $>8443552 [21028480] = \pm 141686 [0]$        $= \pm 425058 [119200]$   
 $>12165328 [25844800] = \pm 212529 [0]$        $= \pm 637582 [178400]$   
 $>17748000 [30661120] = \pm 318794 [0]$        $= \pm 951382 [238400]$   
 $>25622000 [35477440] = \pm 478191 [0]$        $= \pm 1434573 [316800]$   
 $>37433000 [40293760] = \pm 667287 [0]$        $= \pm 1912867 [473600]$   
 $>53150000 [45110080] = \pm 956425 [0]$        $= \pm 2791263 [640000]$   
 $>76725000 [50926400] = \pm 1388633 [0]$        $= \pm 3943183 [848000]$   
 $>110087500 [56742720] = \pm 1982847 [0]$        $= \pm 5752541 [1264000]$   
 $>155631250 [62559040] = \pm 2776463 [0]$        $= \pm 7931383 [1792000]$   
 $>223444500 [68375360] = \pm 3864694 [0]$        $= \pm 11103451 [2384000]$   
 $>320166750 [74191680] = \pm 5291991 [0]$        $= \pm 15875973 [3168000]$   
 $>454749500 [79997920] = \pm 7382987 [0]$        $= \pm 21239939 [4736000]$   
 $>637079250 [85814240] = \pm 10174980 [0]$        $= \pm 30692377 [6400000]$   
 $>905618875 [91630560] = \pm 14249974 [0]$        $= \pm 43397122 [8480000]$   
 $>1275491800 [97446880] = \pm 19699966 [0]$        $= \pm 60097858 [12640000]$   
 $>1769285750 [103263200] = \pm 26999954 [0]$        $= \pm 83093571 [17920000]$   
 $>2369714625 [109079520] = \pm 36499931 [0]$        $= \pm 121491833 [23840000]$   
 $>3259551900 [114895840] = \pm 50299946 [0]$        $= \pm 166389498 [31680000]$   
 $>4249475875 [120712160] = \pm 70499918 [0]$        $= \pm 221969995 [47360000]$   
 $>5929302800 [126528480] = \pm 98799897 [0]$        $= \pm 30692377 [64000000]$   
 $>7939470750 [132344800] = \pm 138399831 [0]$        $= \pm 43397122 [84800000]$   
 $>10889294375 [138161120] = \pm 190599746 [0]$        $= \pm 60097858 [126400000]$   
 $>14459059125 [143977440] = \pm 257999668 [0]$        $= \pm 83093571 [179200000]$   
 $>18688748500 [149793760] = \pm 356999502 [0]$        $= \pm 121491833 [238400000]$   
 $>24387664375 [155610080] = \pm 485999253 [0]$        $= \pm 166389498 [316800000]$   
 $>32086452500 [161426400] = \pm 688998974 [0]$        $= \pm 221969995 [473600000]$   
 $>42185141875 [167242720] = \pm 912998706 [0]$        $= \pm 30692377 [640000000]$   
 $>56283921000 [173059040] = \pm 1216997408 [0]$        $= \pm 43397122 [848000000]$   
 $>76382611250 [178875360] = \pm 1585996110 [0]$        $= \pm 121491833 [1264000000]$   
 $>104571400000 [184691680] = \pm 2115994814 [0]$        $= \pm 30692377 [1792000000]$   
 $>141459187500 [190508000] = \pm 2685993516 [0]$        $= \pm 43397122 [2384000000]$   
 $>186887485000 [196324320] = \pm 356999253 [0]$        $= \pm 121491833 [3168000000]$   
 $>248689575000 [202140640] = \pm 485999004 [0]$        $= \pm 30692377 [4736000000]$   
 $>333085400000 [207957920] = \pm 688998706 [0]$        $= \pm 43397122 [6400000000]$   
 $>437477475000 [213774240] = \pm 912998408 [0]$        $= \pm 121491833 [8480000000]$   
 $>562839210000 [219590560] = \pm 1216997110 [0]$        $= \pm 30692377 [12640000000]$   
 $>763826112500 [225406880] = \pm 1585995812 [0]$        $= \pm 43397122 [17920000000]$   
 $>1045714000000 [231223200] = \pm 2115994514 [0]$        $= \pm 121491833 [23840000000]$   
 $>1414591875000 [237039520] = \pm 2685993216 [0]$        $= \pm 30692377 [31680000000]$   
 $>1868874850000 [242855840] = \pm 356999004 [0]$        $= \pm 43397122 [47360000000]$   
 $>2486895750000 [248672160] = \pm 485998706 [0]$        $= \pm 121491833 [64000000000]$   
 $>3330854000000 [254488480] = \pm 688998408 [0]$        $= \pm 30692377 [84800000000]$   
 $>4374774750000 [260304800] = \pm 912998110 [0]$        $= \pm 43397122 [126400000000]$   
 $>5628392100000 [266121120] = \pm 1216995812 [0]$        $= \pm 121491833 [179200000000]$   
 $>7638261125000 [271937440] = \pm 1585993514 [0]$        $= \pm 30692377 [238400000000]$   
 $>10457140000000 [277753760] = \pm 2115993216 [0]$        $= \pm 43397122 [316800000000]$   
 $>14145918750000 [283570080] = \pm 2685990918 [0]$        $= \pm 121491833 [473600000000]$   
 $>18688748500000 [289386400] = \pm 356998706 [0]$        $= \pm 30692377 [640000000000]$   
 $>24868957500000 [295203720] = \pm 485998408 [0]$        $= \pm 43397122 [848000000000]$   
 $>33308540000000 [301020040] = \pm 688998110 [0]$        $= \pm 121491833 [1264000000000]$   
 $>43747747500000 [306836360] = \pm 912995812 [0]$        $= \pm 30692377 [1792000000000]$   
 $>56283921000000 [312652680] = \pm 1216993514 [0]$        $= \pm 43397122 [2384000000000]$   
 $>76382611250000 [318469000] = \pm 1585990916 [0]$        $= \pm 121491833 [3168000000000]$   
 $>104571400000000 [324285320] = \pm 2115998618 [0]$        $= \pm 30692377 [4736000000000]$   
 $>141459187500000 [329101640] = \pm 2685996316 [0]$        $= \pm 43397122 [6400000000000]$   
 $>186887485000000 [334917960] = \pm 3569993018 [0]$        $= \pm 121491833 [8480000000000]$   
 $>248689575000000 [340734280] = \pm 485998970 [0]$        $= \pm 30692377 [12640000000000]$   
 $>333085400000000 [346550600] = \pm 688998672 [0]$        $= \pm 43397122 [17920000000000]$   
 $>437477475000000 [352366920] = \pm 912996374 [0]$        $= \pm 121491833 [23840000000000]$   
 $>562839210000000 [358183240] = \pm 1216993076 [0]$        $= \pm 30692377 [31680000000000]$   
 $>763826112500000 [363999560] = \pm 1585990778 [0]$        $= \pm 43397122 [47360000000000]$   
 $>1045714000000000 [369815880] = \pm 2115998478 [0]$        $= \pm 121491833 [64000000000000]$   
 $>1414591875000000 [375632200] = \pm 2685996176 [0]$        $= \pm 30692377 [84800000000000]$   
 $>1868874850000000 [381448520] = \pm 3569993878 [0]$        $= \pm 43397122 [126400000000000]$   
 $>2486895750000000 [387264840] = \pm 4859989580 [0]$        $= \pm 121491833 [179200000000000]$   
 $>3330854000000000 [393081160] = \pm 6889986582 [0]$        $= \pm 30692377 [238400000000000]$   
 $>4374774750000000 [398897480] = \pm 9129963584 [0]$        $= \pm 43397122 [316800000000000]$   
 $>5628392100000000 [404713800] = \pm 12169932586 [0]$        $= \pm 121491833 [473600000000000]$   
 $>7638261125000000 [410530120] = \pm 15859909588 [0]$        $= \pm 30692377 [640000000000000]$   
 $>10457140000000000 [416346440] = \pm 21159986588 [0]$        $= \pm 43397122 [848000000000000]$   
 $>14145918750000000 [422162760] = \pm 26859963586 [0]$        $= \pm 121491833 [1264000000000000]$   
 $>18688748500000000 [427979080] = \pm 35699930588 [0]$        $= \pm 30692377 [1792000000000000]$   
 $>24868957500000000 [433795400] = \pm 48599897590 [0]$        $= \pm 43397122 [2384000000000000]$   
 $>33308540000000000 [439611720] = \pm 68899865592 [0]$        $= \pm 121491833 [3168000000000000]$   
 $>43747747500000000 [445428040] = \pm 91299635594 [0]$        $= \pm 30692377 [4736000000000000]$   
 $>56283921000000000 [451244360] = \pm 121699325596 [0]$        $= \pm 43397122 [6400000000000000]$   
 $>76382611250000000 [457060680] = \pm 158599095598 [0]$        $= \pm 121491833 [8480000000000000]$   
 $>104571400000000000 [462877000] = \pm 211599865598 [0]$        $= \pm 43397122 [126400000000000000]$   
 $>141459187500000000 [468693320] = \pm 268599635596 [0]$        $= \pm 121491833 [179200000000000000]$   
 $>186887485000000000 [474509640] = \pm 356999305598 [0]$        $= \pm 30692377 [238400000000000000]$   
 $>248689575000000000 [480325960] = \pm 485998975600 [0]$        $= \pm 43397122 [316800000000000000]$   
 $>333085400000000000 [486142280] = \pm 688998655602 [0]$        $= \pm 121491833 [473600000000000000]$   
 $>437477475000000000 [491958600] = \pm 912996355604 [0]$        $= \pm 30692377 [640000000000000000]$   
 $>562839210000000000 [497774920] = \pm 1216993255606 [0]$        $= \pm 43397122 [848000000000000000]$   
 $>763826112500000000 [503591240] = \pm 1585990955608 [0]$        $= \pm 121491833 [1264000000000000000]$   
 $>1045714000000000000 [509407560] = \pm 2115998655608 [0]$        $= \pm 43397122 [1792000000000000000]$   
 $>1414591875000000000 [515223880] = \pm 2685996355606 [0]$        $= \pm 121491833 [2384000000000000000]$   
 $>1868874850000000000 [521040200] = \pm 3569993055608 [0]$        $= \pm 30692377 [3168000000000000000]$   
 $>2486895750000000000 [526856520] = \pm 485998975610 [0]$        $= \pm 43397122 [4736000000000000000]$   
 $>3330854000000000000 [532672840] = \pm 688998655612 [0]$        $= \pm 121491833 [6400000000000000000]$   
 $>4374774750000000000 [538489160] = \pm 912996355614 [0]$        $= \pm 30692377 [8480000000000000000]$   
 $>5628392100000000000 [544305480] = \pm 1216993255616 [0]$        $= \pm 43397122 [12640000000000000000]$   
 $>7638261125000000000 [550121800] = \pm 1585990955618 [0]$        $= \pm 121491833 [17920000000000000000]$   
 $>10457140000000000000 [555938120] = \pm 2115998655618 [0]$        $= \pm 43397122 [23840000000000000000]$   
 $>14145918750000000000 [561754440] = \pm 2685996355616 [0]$        $= \pm 121491833 [31680000000000000000]$   
 $>18688748500000000000 [567570760] = \pm 3569993055618 [0]$        $= \pm 30692377 [47360000000000000000]$   
 $>24868957500000000000 [573387080] = \pm 485998975620 [0]$        $= \pm 43397122 [64000000000000000000]$   
 $>33308540000000000000 [579203400] = \pm 688998655622 [0]$        $= \pm 121491833 [84800000000000000000]$   
 $>43747747500000000000 [585019720] = \pm 912996355624 [0]$        $= \pm 30692377 [126400000000000000000]$   
 $>56283921000000000000 [590836040] = \pm 1216993255626 [0]$        $= \pm 43397122 [179200000000000000000]$   
 $>76382611250000000000 [596652360] = \pm 1585990955628 [0]$        $= \pm 121491833 [238400000000000000000]$   
 $>104571400000000000000 [602468680] = \pm 2115998655628 [0]$        $= \pm 43397122 [316800000000000000000]$   
 $>1414$