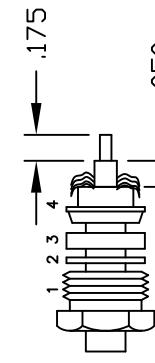


MATERIALS	
BODY	BRASS NICKEL PLATED
CONTACT	GOLD PLATED
INSULATOR	PTFE



ASSEMBLY PROCEDURES

1. SLIDE CLAMP NUT (1), WASHER (2) & GASKET (3) OVER CABLE. STRIP CABLE AS SHOWN. DO NOT NICK BRAID WHILE CUTTING JACKET. TAPER END OF BRAID TO PERMIT ASSEMBLY OF BRAID CLAMP (4). SLIDE BRAID CLAMP (4) OVER BRAID & SEAT AGAINST CABLE.

2. FORM BRAID OVER CLAMP NUT (4). TRIM BRAID BACK TO SHOULDER. CUT DIELECTRIC & CENTER CONDUCTOR TO DIMENSION SHOWN. DO NOT NICK CENTER CONDUCTOR. SOLDER CONTACT TO CENTER CONDUCTOR. REMOVE EXCESS SOLDER. DO NOT OVER HEAT DIELECTRIC. INSERT CABLE ASSEMBLY INTO BODY & TIGHTEN.

PASTERNACK ENTERPRISES, INC.

P.O. BOX 16759, IRVINE, CA 92633

PHONE (949) 261-1920 FAX (949) 261-7451

WEB ADDRESS: www.pasternack.com

E-MAIL ADDRESS: sales@pasternack.com

COAXIAL & FIBER OPTICS

DWG TITLE **PE4304** DES. TNC FEMALE, BULKHEAD, CLAMP ATTACHMENT FOR RG174, RG188 & RG316

REV. A FSCM NO. 53919 CAD FILE 042210 SCALE N/A SIZE A 147

NOTES:
 1. UNLESS OTHERWISE SPECIFIED ALL DIMENSIONS ARE NOMINAL.
 2. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AT ANY TIME.
 3. DIMENSIONS ARE IN INCHES.

BNC Male Connector Clamp/Solder Attachment for RG174, RG316, RG188, .100 inch, PE-B100, PE-C100, LMR-100

RF Connectors Technical Data Sheet

PE4084

Configuration

- BNC Male Connector
- MIL-STD-348A
- 50 Ohms
- Straight Body Geometry
- RG174, RG316, RG188, .100 inch, PE-B100, PE-C100, LMR-100 Interface Type
- Clamp/Solder Attachment

Features

- Max. Operating Frequency 4 GHz
- Good VSWR of 1.3:1
- Gold Plated Brass Contact
- 30 μ in minimum contact plating

Applications

- General Purpose Test
- Custom Cable Assemblies

Description

Pasternack's PE4084 BNC male connector with clamp/solder attachment for RG174, RG316, RG188, .100 inch, PE-B100, PE-C100 and LMR-100 is part of our full line of RF components available for same-day shipping. Our BNC male connector operates up to a maximum frequency of 4 GHz and offers good VSWR of 1.3:1.

Our BNC male connector PE4084 datasheet specifications and drawing with dimensions are shown below in this PDF. Pasternack's broad catalog of RF, microwave and millimeter wave connectors allows designers to configure and customize their signal connections however they like. Whether the need is to provide an I/O for a board design, or simply create a custom cable assembly configuration, Pasternack has the right connector for the job. Pasternack can also expertly build your custom cable assemblies for you and ship same-day.

Electrical Specifications

Description	Minimum	Typical	Maximum	Units
Frequency Range	DC		4	GHz
VSWR			1.3:1	
Operating Voltage (AC)			500	Vrms
Dielectric Withstanding Voltage (AC)			1,500	Vrms
Inner Conductor DC Resistance			1.5	mOhms
Outer Conductor DC Resistance			0.5	mOhms
Insulation Resistance	5,000			MOhms

Performance by Frequency

Description	F1	F2	F3	F4	F5	Units
Frequency Range	DC to 3					GHz
Insertion Loss, Max	0.2					dB

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [BNC Male Connector Clamp/Solder Attachment for RG174, RG316, RG188, .100 inch, PE-B100, PE-C100, LMR-100 PE4084](#)

BNC Male Connector Clamp/Solder Attachment for RG174, RG316, RG188, .100 inch, PE-B100, PE-C100, LMR-100

RF Connectors Technical Data Sheet

PE4084

Electrical Specification Notes:
RF leakage: 55 dB min at 3 GHz.

Mechanical Specifications

Size	
Length	1.09 in [27.69 mm]
Width/Dia.	0.57 in [14.48 mm]
Weight	0.042 lbs [19.05 g]
Mating Cycles	500 Cycles

Material Specifications

Description	Material	Plating
Contact	Brass	Gold 30 μ in minimum
Insulation	PTFE	
Body	Brass	Nickel 100 μ in minimum
Coupling Nut	Brass	Nickel

Environmental Specifications

Temperature

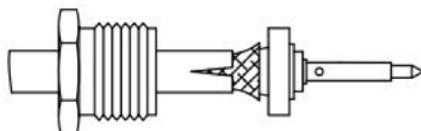
Operating Range	-65 to +165 deg C
Vibration	MIL-STD-202, Method 204, Condition B
Temperature Cycle	MIL-STD-202, Method 107, Condition B
Salt Spray	MIL-STD-202, Method 101, Condition B

Compliance Certifications (see [product page](#) for current document)

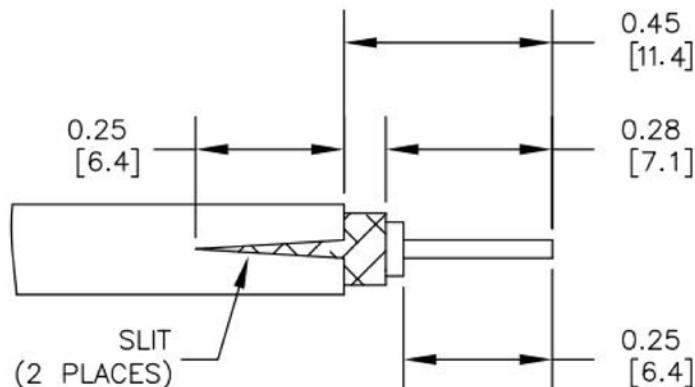
Plotted and Other Data

Notes:

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [BNC Male Connector Clamp/Solder Attachment for RG174, RG316, RG188, .100 inch, PE-B100, PE-C100, LMR-100 PE4084](#)



BNC Male Connector Clamp/Solder Attachment for RG174,
RG316, RG188, .100 inch, PE-B100, PE-C100, LMR-100


RF Connectors
Technical Data Sheet

PE4084

Assembly Instruction

CONTACT ASSEMBLY

STRIPPING DIMENSION

ASSEMBLY PROCEDURES

1. SLIDE HEX NUT OVER CABLE. STRIP CABLE AS SHOWN.
2. FLARE BRAID AND SLIDE CONTACT ASSEMBLY OVER DIELECTRIC AND UNDER BRAID UNTIL THE CONTACT ASSEMBLY STOPS.
3. TRIM EXCESS BRAID TO DIAMETER OF CONTACT ASSEMBLY. SOLDER CONTACT ONTO CENTER CONDUCTOR.
4. INSERT ASSEMBLY INTO BODY WITH AND TIGHTEN USING 15 IN-LBS MIN. TORQUE WRENCH.

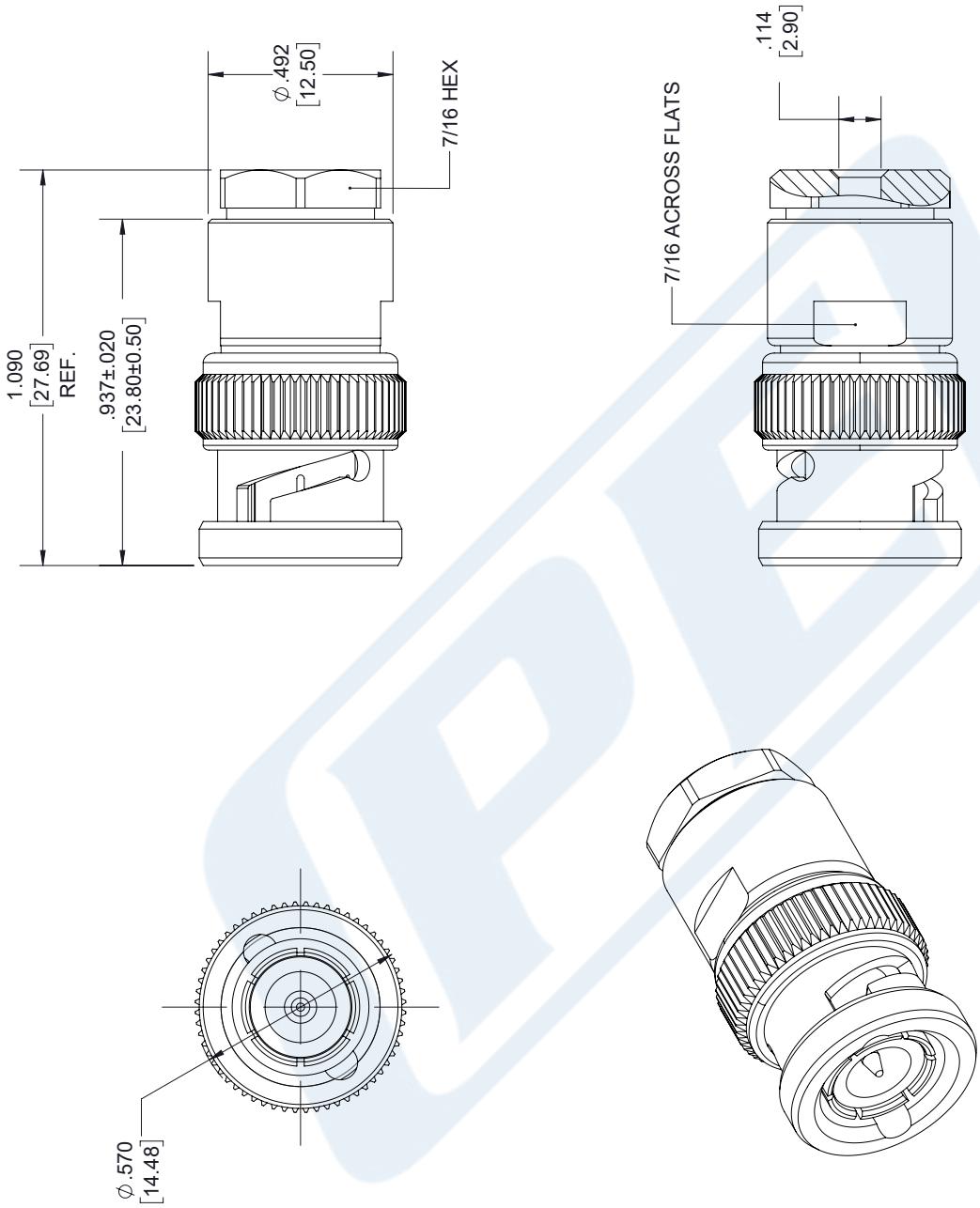
Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [BNC Male Connector Clamp/Solder Attachment for RG174, RG316, RG188, .100 inch, PE-B100, PE-C100, LMR-100 PE4084](#)

BNC Male Connector Clamp/Solder Attachment for RG174, RG316, RG188, .100 inch, PE-B100, PE-C100, LMR-100

RF Connectors Technical Data Sheet

PE4084

BNC Male Connector Clamp/Solder Attachment for RG174, RG316, RG188, .100 inch, PE-B100, PE-C100, LMR-100 from Pasternack Enterprises has same day shipment for domestic and International orders. Our RF, microwave and millimeter wave products maintain a 99.4% availability and are part of the broadest selection in the industry.


Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [BNC Male Connector Clamp/Solder Attachment for RG174, RG316, RG188, .100 inch, PE-B100, PE-C100, LMR-100 PE4084](#)

URL: <https://www.pasternack.com/bnc-male-standard-rg174-rg316-rg188-connector-pe4084-p.aspx>

The information contained in this document is accurate to the best of our knowledge and representative of the part described herein. It may be necessary to make modifications to the part and/or the documentation of the part, in order to implement improvements. Pasternack reserves the right to make such changes as required. Unless otherwise stated, all specifications are nominal. Pasternack does not make any representation or warranty regarding the suitability of the part described herein for any particular purpose, and Pasternack does not assume any liability arising out of the use of any part or documentation.

PE4084 CAD Drawing

BNC Male Connector Clamp/Solder Attachment for RG174,
RG316, RG188, .100 inch, PE-B100, PE-C100, LMR-100

PASTERNACK[®]
THE ENGINEER'S RESOURCE
P.O. Box 16759 | Irvine | CA | 92623
Phone: (949) 261-1920 | Fax: (949) 261-7451
Website: www.pasternack.com | E-Mail: sales@pasternack.com

PASTERNACK[®]
THE ENGINEER'S RESOURCE
P.O. Box 16759 | Irvine | CA | 92623
Phone: (949) 261-1920 | Fax: (949) 261-7451
Website: www.pasternack.com | E-Mail: sales@pasternack.com

NOTES:
1. UNLESS OTHERWISE SPECIFIED ALL DIMENSIONS ARE NOMINAL.
2. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AT ANY TIME.
3. DIMENSIONS ARE IN INCHES [mm].

CAGE CODE	DWG TITLE	CAD FILE	SCALE	SIZE
53919	PE4084	10/09/18	N/A	A

LMR-100-UF Ultra Flex version of the 100 series Low Loss Coax

RF Cables Technical Data Sheet

LMR-100A-UF

Times Microwave Systems Coax Cable Specification

Configuration

- Low Loss, Outdoor Flexible Cable
- 2 Shield(s)

Features

- Ultra Flexible Coax with Stranded Center Conductor
- Max Operating Frequency of 5.8 GHz
- Phase Velocity 66% VoP
- Max Operating Temperature +85°C
- TPE Jacket
- Min Install Bend Radius of 0.25 inches

Applications

- RF Test Systems
- Antenna Installs
- Laboratory Applications
- General Purpose RF Interconnect
- Jumper Assemblies

Description

LMR-100-UF Ultra Flex version of the 100 series Low Loss Coax from Times Microwave is part of the large product offering by Pasternack of radio frequency coaxial cable types specifically stocked to be ready for same-day shipment. Pasternack LMR-100-UF coax cable is manufactured in an ultra flexible design and has a 50 Ohm impedance. This low loss and ultra flexible 50 Ohm coax cable LMR-100-UF is constructed with a 0.110 inch diameter and Black TPE jacket.

LMR-100-UF flexible 50 Ohm coax cable with TPE jacket is rated for a 5.8 GHz maximum operating frequency. This 50 Ohm 0.110 inch diameter and low loss ultra flexible coax cable is built with an aluminum double shield count and RF shielding of 90 dB. Times Microwave LMR-100-UF TPE coax is constructed with PE dielectric and a maximum operating temperature of 85 degrees C. Pasternack's offering of LMR-100-UF coax cable provides specs for this wire on its RF coax cable LMR-100-UF datasheet.

LMR-100-UF cable is part of more than one million RF, microwave parts in stock at Pasternack. This Times Microwave low loss ultra flexible LMR-100-UF coax cable is ready to buy and can be shipped worldwide. Pasternack also maintains a wide selection of other radio frequency coaxial cable types that ship same-day from our warehouse as with the rest of our other RF/microwave components.

* LMR™ is a trademark of Times Microwave Systems.

Electrical Specifications

Description	Minimum	Typical	Maximum	Units
Frequency Range	DC		5.8	GHz
Impedance	50			Ohms
Velocity of Propagation	66			%
Time Delay	1.54	5.05		ns/ft ns/m
Shielding Effectiveness	90			dB
Dielectric Withstanding Voltage (DC)			500	Vdc

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [LMR-100-UF Ultra Flex version of the 100 series Low Loss Coax LMR-100A-UF](#)

LMR-100-UF Ultra Flex version of the 100 series Low Loss Coax

RF Cables Technical Data Sheet

LMR-100A-UF

Jacket Spark	2,000	Vrms
Inner Conductor DC Resistance	81	Ohms/1000ft
Outer Conductor DC Resistance	9.5	Ohms/1000ft
Nominal Capacitance	30.8 [101.05]	pF/ft [pF/m]
Nominal Inductance	0.077 [0.25]	uH/ft [uH/m]
Input Power (Peak)	600	Watts

Performance by Frequency Band

Description	F1	F2	F3	F4	F5	Units
Frequency	50	150	220	450	900	MHz
Attenuation, Typ	5.1	8.9	10.9	15.8	22.8	dB/100ft
	16.73	29.2	35.76	51.84	74.8	dB/100m
Input Power (CW), Max	180	100	83	57	39	Watts

Description	F6	F7	F8	F9	F10	Units
Frequency	1.5	1.8	2	2.5	5.8	GHz
Attenuation, Typ	30.1	33.2	35.2	39.8	64.1	dB/100ft
	98.75	108.92	115.49	130.58	210.3	dB/100m
Input Power (CW), Max	29	27	25	22	13	Watts

Mechanical Specifications

Diameter	0.11 in [2.79 mm]
Weight	0.0092 lbs/ft [0.01 Kg/m]
Min. Bend Radius (Installation)	0.25 in [6.35 mm]
Min. Bend Radius (Repeated)	1 in [25.4 mm]
Bending Moment	0.1 lbs-ft [0.14 N-m]
Tensile Strength	15 lbs [6.8 kg]
Flat Plate Crush	10 lbs/in [0.18 Kg/mm]

Construction Specifications

Description	Material and Plating	Diameter
Inner Conductor	Copper, 1 Strand	0.018 in [0.46 mm]

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [LMR-100-UF Ultra Flex version of the 100 series Low Loss Coax LMR-100A-UF](#)

LMR-100-UF Ultra Flex version of the 100 series Low Loss Coax

RF Cables Technical Data Sheet

LMR-100A-UF

Conductor Type	Solid	
Dielectric	PE	0.06 in [1.52 mm]
First Shield	Aluminum Tape	[]
Second Shield	Tinned Copper	[]
Jacket	TPE, Black	0.11 in [2.79 mm]

Environmental Specifications

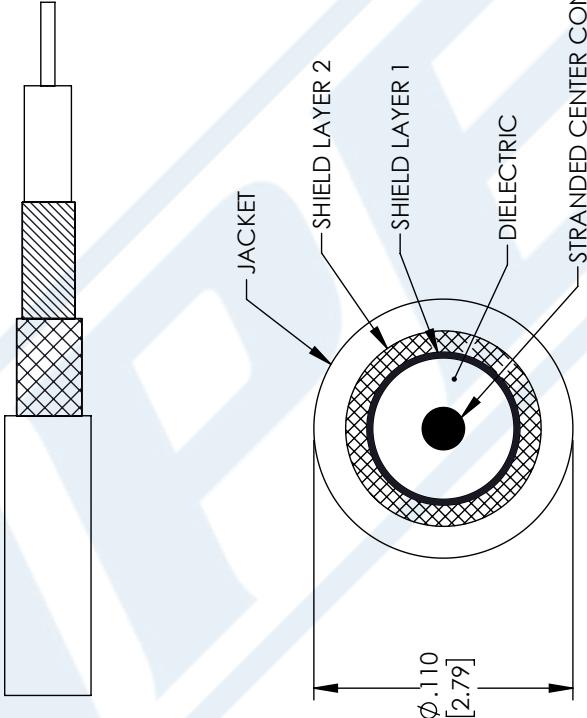
Temperature

Operating Range
Installation Range
Storage Range

-40 to +85 deg C
-40 to +85 deg C
-70 to +85 deg C

Compliance Certifications (see [product page](#) for current document)

Plotted and Other Data


Notes:

LMR-100-UF Ultra Flex version of the 100 series Low Loss Coax from Pasternack Enterprises has same day shipment for domestic and International orders. Our RF, microwave and millimeter wave products maintain a 99.4% availability and are part of the broadest selection in the industry.

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: [LMR-100-UF Ultra Flex version of the 100 series Low Loss Coax LMR-100A-UF](#)

URL: <https://www.pasternack.com/low-loss-flexible-lmr-100a-uf-tpe-jacket-aluminum-tape-over-tinned-copper-outer-conductor-double-shielded-lmr-100a-uf-p.aspx>

The information contained in this document is accurate to the best of our knowledge and representative of the part described herein. It may be necessary to make modifications to the part and/or the documentation of the part, in order to implement improvements. Pasternack reserves the right to make such changes as required. Unless otherwise stated, all specifications are nominal. Pasternack does not make any representation or warranty regarding the suitability of the part described herein for any particular purpose, and Pasternack does not assume any liability arising out of the use of any part or documentation.

REV. A DESCRIPTION INITIAL RELEASE 06-04-2021 APPROVED SELLIS																													
REVISIONS																													
<div style="border: 1px solid black; padding: 5px; display: inline-block;"> PASTERNACK an INFINITE® brand </div> <div style="display: inline-block; vertical-align: top;"> THIRD-ANGLE PROJECTION </div> <div style="display: inline-block; vertical-align: top; text-align: center;"> THE INFORMATION AND DESIGN IN THIS DOCUMENT IS THE PROPERTY OF PASTERACK CORPORATION ALL RIGHTS RESERVED </div> <div style="display: inline-block; vertical-align: top; text-align: center;"> SHEET 1 OF 1 SCALE N/A REV A </div>																													
<div style="border: 1px solid black; padding: 5px; display: inline-block;"> UNLESS OTHERWISE SPECIFIED LEADING DIMENSIONS ARE INCHES DIMENSIONS IN [] ARE MILLIMETERS </div> <div style="display: inline-block; vertical-align: top; text-align: center;"> TOLERANCES: <table border="0" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 30%;">$X = \pm .2$</td> <td style="width: 30%;">$[5.08]$</td> <td style="width: 40%;">FRACTIONS</td> </tr> <tr> <td>$.XX = \pm .02$</td> <td>$[.51]$</td> <td>$\pm 1/32$</td> </tr> <tr> <td>$XXX = \pm .005$</td> <td>$[.13]$</td> <td>ANGLES $\pm 1^\circ$</td> </tr> </table> CABLE LENGTH (L) TOLERANCES: <table border="0" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 30%;">$L \leq 12$</td> <td style="width: 30%;">$[305] = +1[28] / -0$</td> <td style="width: 40%;"></td> </tr> <tr> <td>$12 [305] < L \leq 60$</td> <td>$[1524] = +2[51] / -0$</td> <td></td> </tr> <tr> <td>$60 [1524] < L \leq 120$</td> <td>$[3048] = +4[102] / -0$</td> <td></td> </tr> <tr> <td>$120 [3048] < L \leq 300$</td> <td>$[7620] = +6[152] / -0$</td> <td></td> </tr> <tr> <td>$300 [7620] < L$</td> <td>$= +58[6] / -0$</td> <td></td> </tr> </table> ALL DIMENSIONS SHOWN ARE FOR REFERENCE ONLY. </div> <div style="display: inline-block; vertical-align: top; text-align: right;"> THESE COMMODITIES, TECHNOLOGY OR SOFTWARE WERE EXPORTED FROM THE UNITED STATES IN ACCORDANCE WITH THE EXPORT ADMINISTRATION REGULATIONS. DIVERSION CONTRARY TO U.S. LAW PROHIBITED. </div>						$X = \pm .2$	$[5.08]$	FRACTIONS	$.XX = \pm .02$	$[.51]$	$\pm 1/32$	$XXX = \pm .005$	$[.13]$	ANGLES $\pm 1^\circ$	$L \leq 12$	$[305] = +1[28] / -0$		$12 [305] < L \leq 60$	$[1524] = +2[51] / -0$		$60 [1524] < L \leq 120$	$[3048] = +4[102] / -0$		$120 [3048] < L \leq 300$	$[7620] = +6[152] / -0$		$300 [7620] < L$	$= +58[6] / -0$	
$X = \pm .2$	$[5.08]$	FRACTIONS																											
$.XX = \pm .02$	$[.51]$	$\pm 1/32$																											
$XXX = \pm .005$	$[.13]$	ANGLES $\pm 1^\circ$																											
$L \leq 12$	$[305] = +1[28] / -0$																												
$12 [305] < L \leq 60$	$[1524] = +2[51] / -0$																												
$60 [1524] < L \leq 120$	$[3048] = +4[102] / -0$																												
$120 [3048] < L \leq 300$	$[7620] = +6[152] / -0$																												
$300 [7620] < L$	$= +58[6] / -0$																												